• Title/Summary/Keyword: Phase Variable

Search Result 1,065, Processing Time 0.025 seconds

The effect of gravity and hydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.425-434
    • /
    • 2020
  • The present paper is concerned at investigating the effect of hydrostatic initial stress, gravity and magnetic field in fiber-reinforced thermoelastic solid, with variable thermal conductivity. The formulation of the problem applied in the context of the three-phase-lag model, Green-Naghdi theory with energy dissipation, as well as coupled theory. The exact expressions of the considered variables by using state-space approaches are obtained. Comparisons are performed in the absence and presence of the magnetic field as well as gravity. Also, a comparison was made in the three theories in the absence and presence of variable thermal conductivity as well as hydrostatic initial stress. The study finds applications in composite engineering, geology, seismology, control system and acoustics, exploration of valuable materials beneath the earth's surface.

Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.681-697
    • /
    • 2016
  • The model of two-temperature magneto-thermoelasticity for a non-simple variable-thermal-conductivity infinitely-long solid cylinder is established. The present cylinder is made of an isotropic homogeneous thermoelastic material and its bounding plane is traction-free and subjected to a time-dependent temperature. An exact solution is firstly obtained in Laplace transform space to obtain the displacement, incremental temperature, and thermal stresses. The inversion of Laplace transforms has been carried out numerically since the response is of more interest in the transient state. A detailed analysis of the effects of phase-lags, an angular frequency of thermal vibration and the variability of thermal conductivity parameter on the field quantities is presented.

Influence of variable thermal conductivity on waves propagating through thermo-elastic medium

  • Abo-Dahab, Sayed M.;Jahangir, Adnan;Dar, Adiya
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.459-467
    • /
    • 2022
  • We investigated the influence of variable thermal conductivity on waves propagating through the elastic medium. Infinitesimal deformation results in generation of thermal signal, and is analyzed by using dual phase lag heat (DPL) conduction model. The medium considered is homogenous, isotropic and bounded by thermal shock. The elastic waves propagating through the medium are considered to be harmonic in nature, and expressions for the physical variables are obtained accordingly. Analytically, we obtained the expressions for displacement components, temperature, micro-temperature component and stresses. The theoretical results obtained are computed graphically for the particular medium by using MATLAB.

Single-Phase Power Factor Correction(PFC) Converter Using the Variable gain (가변이득을 가지는 디지털제어 단상 역률보상회로)

  • Baek, J.W.;Shin, B.C.;Jeong, C.Y.;Lee, Y.W.;Yoo, D.W.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.240-243
    • /
    • 2001
  • This paper presents the digital controller using variable gain for single-phase power factor correction (PFC) converter. Generally, the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This is why input current is distorted under low input voltage. In particular, a digital controller has more time delay than an analog controller which degrades characteristics of control loop. So, it causes the problem that the gain of current control loop isn't increased enough. In addition, the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult. In this paper, the improved digital control method for single-phase power factor converter is presented. The variable gain according to input voltage and input current help to improve current shape. The 800W converter is manufactured to verify the proposed control method.

  • PDF

MRAS Based Sensorless Control of a Series-Connected Five-Phase Two-Motor Drive System

  • Khan, M. Rizwan;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.224-234
    • /
    • 2008
  • Multi-phase machines can be used in variable speed drives. Their applications include electric ship propulsion, 'more-electric aircraft' and traction applications, electric vehicles, and hybrid electric vehicles. Multi-phase machines enable independent control of a few numbers of machines that are connected in series in a particular manner with their supply being fed from a single voltage source inverter(VSI). The idea was first implemented for a five-phase series-connected two-motor drive system, but is now applicable to any number of phases more than or equal to five-phase. The number of series-connected machines is a function of the phase number of VSI. Theoretical and simulation studies have already been reported for number of multi-phase multi-motor drive configurations of series-connection type. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information concerning the rotor speed is extracted from measured stator currents and voltages at motor terminals. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an MRAS estimator based sensorless control of a vector controlled series-connected two-motor five-phase drive system with current control in the stationary reference frame. Results, obtained with fixed-voltage, fixed-frequency supply, and hysteresis current control are presented for various operating conditions on the basis of simulation results. The purpose of this paper is to report the first ever simulation results on a sensorless control of a five-phase two-motor series-connected drive system. The operating principle is given followed by a description of the sensorless technique.

PHASE FIELD MODELING OF CRYSTAL GROWTH

  • Sekerka, Robert F.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.139-156
    • /
    • 1996
  • The phase field model is becoming the model of choice for the theoretical study of the morphologies of crystals growth from the melt. This model provides an alternative approach to the solution of the classical (sharp interface) model of solidification by introducing a new variable, the phase field, Ø, to identify the phase. The variable Ø takes on constant values in the bulk phases and makes a continuous transition between these values over a thin transition layer that plays the role of the classically sharp interface. This results in Ø being governed by a new partial differential equation(in addition to the PDE's that govern the classical fields, such as temperature and composition) that guarantees (in the asymptotic limit of a suitably thin transition layer) that the appropriate boundary conditions at the crystal-melt interface are satisfied. Thus, one can proceed to solve coupled PDE's without the necessity of explicitly tracking the interface (free boundary) that would be necessary to solve the classical (sharp interface) model. Recent advances in supercomputing and algorithms now enable generation of interesting and valuable results that display most of the fundamental solidification phenomena and processes that are observed experimentally. These include morphological instability, solute trapping, cellular growth, dendritic growth (with anisotropic sidebranching, tip splitting, and coupling to periodic forcing), coarsening, recalescence, eutectic growth, faceting, and texture development. This talk will focus on the fundamental basis of the phase field model in terms of irreversible thermodynamics as well as it computational limitations and prognosis for future improvement. This work is supported by the National Science Foundation under grant DMR 9211276

  • PDF

The Correlation Parameters and the Optimization of a PN Sequence Phase for Variable Spreading Gain (VSG) Multi-Rate DS/CDMA System (멀티레이트 서비스를 지원하는 VSG-DS/C음 시스템에서의 PN 시퀀스 상관 파라미터 특성과 최적화)

  • 이연우;김응배;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.10-17
    • /
    • 2000
  • In this paper, we evaluate the correlation properties and the optimization of PN sequence phase for multi-media DS/CDMA system with variable spreading gain (VSG) scheme. In multi-media multi-rate DS/CDMA systems, the optimization of PN sequence phase is not a tractable problem, since the sequences should be optimized against both sequences of the same length and other sequences with different length. Hence, we verify the correlation properties of PN sequence phase in multi-rate system environment and furthermore, we propose the new phase criterion, MIN-AIP (minimum-average interference parameter), to minimize the bit error rate (BER). As the results of performance evaluations, it is shown that the performance of MIN-AIP criteria gives the best results.

  • PDF

Air-pressure Control of Diaphragm using Variable Frequency Current Control (가변 주파수 전류 제어에 의한 다이어프램의 압력제어)

  • Lim, Geun-Min;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.258-265
    • /
    • 2011
  • This paper presents a variable frequency current control scheme for the air-pressure control of diaphragm. Differ from the conventional air-pressure control of diaphragm, the proposed method uses a single-phase inverter to control the phase current and frequency. The phase current is adjusted to keep the reference air-pressure of the diaphragm. And the current frequency is changed to reduce the mechanical vibration. In order to smooth change of the operation with a constant air-pressure, the frequency is changed according to the voltage reference from the current controller. When the phase current is satisfied to the constant air-pressure, the current frequency is increased to reduce the vibration of the diaphragm. When the reference voltage to keep the phase current is over than the set value, the current frequency is decreased to keep the air-pressure. The proposed control scheme is verified by the experimental test of a commercial diaphragm.

Performance Limits of Three-Phase Self-Excited Induction Generator (SEIG) as a Stand Alone DER

  • Slimene, Marwa Ben;Khlifi, Mohamed Arbi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.145-150
    • /
    • 2017
  • This paper present a unified method of steady state performance analysis and limits characteristics of an autonomous three-phase self-excited induction generator (SEIG) driven by a wind turbine under different types of loads and speeds. The proposed method is based on a new mathematical function to solve for the real and imaginary components of the complex equation of the mathematical model. Performances limits, regulation and characteristics of different configurations will be thoroughly examined and compared. The proposed system will be modeled and simulated and the performance limits characteristics will be compared with variable speed and variable capacity.

A Data-Mining-based Methodology for Military Occupational Specialty Assignment (데이터 마이닝 기반의 군사특기 분류 방법론 연구)

  • 민규식;정지원;최인찬
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • In this paper, we propose a new data-mining-based methodology for military occupational specialty assignment. The proposed methodology consists of two phases, feature selection and man-power assignment. In the first phase, the k-means partitioning algorithm and the optimal variable weighting algorithm are used to determine attribute weights. We address limitations of the optimal variable weighting algorithm and suggest a quadratic programming model that can handle categorical variables and non-contributory trivial variables. In the second phase, we present an integer programming model to deal with a man-power assignment problem. In the model, constraints on demand-supply requirements and training capacity are considered. Moreover, the attribute weights obtained in the first phase for each specialty are used to measure dissimilarity. Results of a computational experiment using real-world data are provided along with some analysis.