• Title/Summary/Keyword: Phase Stability

Search Result 1,974, Processing Time 0.04 seconds

Phase Stability Studies of Unirradiated Al-U-10wt.%Mo Fuel at Elevated Temperature

  • Kim, Ki-Hwan;Jang, Se-Jung;Hyun suk Ahn;Park, Jong-Man;Kim, Chang-Kyu;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.273-278
    • /
    • 1998
  • The phase stability of atomized U-10wt. %Mo powder and the thermal compatibility of dispersed fuel meats at 40$0^{\circ}C$ and 50$0^{\circ}C$ have been characterized. Atomized U-10Mo powder has a good \ulcorner-U phase stability, and excellent thermal compatibility with aluminum matrix in a dispersion fuel. It is thought that the good phase stability is related to th large supersaturation of Mo atoms in the atomized particles. The reasons for the excellent thermal compatibility have been considered to be as follows. Before thermal decomposition of ${\gamma}$-U in particle, supersaturated Mo atoms at ${\gamma}$-U grain boundaries inhibit the diffusion of Al atoms. After thermal decomposition of ${\gamma}$-U into ${\gamma}$-U and U$_2$Mo, the intermetallic compound of U$_2$Mo seems to retard the penetration of Al atoms. The penetration mechanisms of aluminum atoms in the atomized particles are assumed be classified as (a) diffusion through the reacted layer between fuel particles and Al matrix leaving a kernel-like unreacted island and (b) diffusion along grain boundaries showing several unreacted islands and more reacted regions.

  • PDF

STABILITY OF TWO-PHASE FLOW MODELS

  • Jin, Hyeon-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.587-596
    • /
    • 2007
  • In this paper, we study two-phase flow models. The chunk mix model of the two-phase flow equations is analyzed by a characteristic analysis. The model discussed herein has real characteristic values for all physically acceptable states and except for a set of measure zero has a complete set of characteristic vectors in state space.

An Analysis on Effects of Phase Compensation on Power System Stability in the PSS Parameter Tuning (PSS Tuning시 위상보상이 계통안정도에 미치는 영향 분석)

  • Kim, Tae-Kyun;Shin, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1147-1149
    • /
    • 1998
  • This paper presents the result of an analysis on effects of phase compensation on power system stability in the PSS parameter tuning. Synchronizing and damping coefficients are induced from lineal model for generator with PSS. Synchronizing and damping coefficients corresponding to time constants of phase compensation control block are calculated on a single machine, infinite bus test system. The Parameter tuning concepts, basic function, structural elements and performance criteria of PSS are introduced.

  • PDF

Preparation of Polyurea Microcapsules Containing Phase Change Material and their Application on Fiber Composites (상전이물질을 함유한 폴리우레아 마이크로캡슐의 제조와 섬유복합소재에의 적용)

  • Kim, Hea-In;Jin, Xuan-Zhen;Choi, Hae-Wook;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.37-44
    • /
    • 2007
  • In this study, for textile use, the octadecane of phase change materials(PCM) was encapsulated in several micro-diameter shell which prevents leakage of the material during its liquid phase. Microencapsulated PCM(PM) was prepared with the different weight ratio of core material to wall material and by interfacial polymerization methods using polyurea as shell material. Phase stability for O/W emulsion of PCM and PVA aq. (PE) was evaluated by Turbiscan Lab. The capsule formation win identified using FT-IR. Physical properties of microcapsules including diameter, particle distribution, morphology were investigated. Thermal transport properties of suede treated with PM(SPM) were determined by KES-F7 system.

Candelilla Wax Nanoemulsions Prepared by Phase Inversion Composition (PIC) Method

  • Kim, Eun-Hee;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.203-209
    • /
    • 2014
  • Candelilla wax-in-water nanoemulsions stabilized by Span 80/Tween 80 were prepared by the phase inversion composition (PIC) method. Stable nanoemulsions with droplet diameters below 50 nm could be formed when the hydrophilic-lipophilic balance (HLB) values were between 13.5 and 14.5, surfactant concentration was 5.0 wt%, and the surfactant-wax ratio was 1:1. Increased emulsification temperature and cooling rate were found to improve the emulsion properties. Process of PIC (adding aqueous phase to the wax phase) produced smaller droplet size nanoemulsion compared to the process of adding wax phase to the aqueous phase. The stability of these nanoemulsions was assessed by following the change in droplet diameters with time of storage at room temperature (${\sim}25^{\circ}C$). The size remained constant during 2 months storage time.

Influence of Xanthan, Emulsification Temperature, and Environmental Stresses on the Preparation of Water-in-Corn Oil Emulsions Droplets Coated by Polyglycerol Polyricinoleate

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.299-306
    • /
    • 2009
  • The purpose of this study was to prepare stable water-in-corn oil (W/O) emulsion droplets coated by polyglycerol polyricinoleate (PGPR). W/O emulsions (20 wt% aqueous phase, 80 wt% oil phase containing 8 wt% PGPR) were produced by high pressure homogenization (Emulsions 1), however, appreciable amount of relatively large water droplets (d>$10{\mu}m$) were found. To facilitate droplet disruption, viscosity of each phase was adjusted: (i) increased the viscosity of aqueous phase by adding 0.1 wt% xanthan (Emulsions 2); (ii) decreased the viscosity of oil phase and aqueous phase by heating them separately at $50^{\circ}C$ for 1 hr immediately before emulsification (Emulsions 3). Homogenizing at the elevated temperature clearly led to a smaller water droplet size, whereas xanthan neither improved nor adversely affected on the microstructures of the emulsions. In addition, the Emulsions 3 had good stability to droplet aggregation under shearing stress, thermal processing, and long term storage.

Formation of Phases and Mechanical Properties of YSZ-Based Thermal Barrier Coating Materials Doped with Rare Earth Oxides (희토류 산화물이 첨가된 YSZ 기반의 열차폐 코팅용 소재의 상 형성 및 기계적 특성)

  • Yong Seok Choi;Gye Won Lee;Sahn Nahm;Yoon suk Oh
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.402-408
    • /
    • 2023
  • This study focused on improving the phase stability and mechanical properties of yttria-stabilized zirconia (YSZ), commonly utilized in gas turbine engine thermal barrier coatings, by incorporating Gd2O3, Er2O3, and TiO2. The addition of 3-valent rare earth elements to YSZ can reduce thermal conductivity and enhance phase stability while adding the 4-valent element TiO2 can improve phase stability and mechanical properties. Sintered specimens were prepared with hot-press equipment. Phase analysis was conducted with X-ray diffraction (XRD), and mechanical properties were assessed with Vickers hardness equipment. The research results revealed that, except for Z10YGE10T, most compositions predominantly exhibited the t-phase. Increasing the content of 3-valent rare earth oxides resulted in a decrease in the monoclinic phase and an increase in the tetragonal phase. In addition, the t(400) angle decreased while the t(004) angle increased. The addition of 10 mol% of 3-valent rare-earth oxides discarded the t-phase and led to the complete development of the c-phase. Adding 10 mol% TiO2 increased hardness than YSZ.

Thermal Stability of Superconductor NdBCO Sintered at Various Oxygen Partial Pressures (다양한 산소분압에서 소결한 NdBCO 초전도체의 열적 안정성)

  • Chung, J.K.;Kim, W.J.;Park, S.C.;Kang, S.G.;Lim, Y.J.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.133-138
    • /
    • 2009
  • The $Nd_{1+x}Ba_{2-x}Cu_3O_{7-{\delta}}$(Nd123) superconductor exhibits high performance in high magnetic field and high temperature. We have studied phase stability for Nd123 under reduced oxygen partial pressure and various heat-treatment conditions. The main phase is Nd123 and some samples contain small amounts of Nd422 depending on the temperature and oxygen partial pressure. The decomposition temperature decreases with decreasing oxygen partial pressure from $1052^{\circ}C(P(O_2)$=150 Torr) to about $845^{\circ}C(P(O_2)$=0.1 Torr). The liquidus line was steeper temperature with decreasing oxygen partial pressure. In same condition of oxygen partial pressure, the region of stable Nd123 phase was formed at slightly higher temperature than the region of stable YBCO phase.

  • PDF

A Study on the Phase Behavior and Stability of the Polar Oil Emulsion System (Polar Oil계 Emulsion의 상거동과 안정성에 관한 연구)

  • Park, Eun-Hee;Chung, Hung-Ho;Kim, Jong-Gyu;Kim, Hyung-Il;Rho, Jae-Seong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.510-516
    • /
    • 1997
  • O/W emulsions were prepared by adding water to the solution containing amphiphilic resin and the mixed emulsifier of cetyl alcohol polyoxyethylene(20) sorbitan monooleate. Phase behavoir of these emulsions was studied at various HLB(Hydrophilic Lipophilic Balance) values and temperatures. The polar oil emulsion containing the amphiphilic resin showed improved phase stability at various temperatures. Model compounds which contain one of the functional groups in the amphiphilic resin were used in the polar oil phase in order to study the effect of interaction between the functional group and the emulsifier on the phase stability of emulsion. These model compound emulsions showed the phase stability order of poly(acrylic acid)

  • PDF

Study on Leading-phase Operation Capability of a 770 MW Jumbo Hydro-generator based on Stability Analysis and End-Region Heat Analysis

  • Fan, Zhen-nan;Zhou, Zhi-ting;Li, Jian-fu;Wen, Kun;Wang, Jun;Sun, Zhang;Wang, Tao;Yao, Bing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1317-1325
    • /
    • 2018
  • A generator-grid coupling calculation model is established to study the leading-phase operational capability of a 770 MW jumbo hydro-generator in a Chinese ultra-mega hydropower station. The static and dynamic stability of the generator are analyzed and calculated to obtain stability limits under leading-phase operating conditions. Three-dimensional (3D) time-varying nonlinear moving electromagnetic and temperature field models of the generator end-region are also established and used to determine the magnetic field, loss, and temperature of the end-region under the leading-phase operating condition. The simulation results agree with data measured from the actual 770 MW hydro-generator. This paper provides reliable reference data for the leading-phase operation of a jumbo hydro-generator, which will help to improve in the design and manufacture of future hydro-generators.