• Title/Summary/Keyword: Phase Inductance

Search Result 330, Processing Time 0.025 seconds

Design of LCL-filter for Grid-Connected Three-Phase Inverters Using a Discontinuous PWM Method (DPWM 방식을 적용한 3상 계통 연계 인버터의 LCL-필터 설계)

  • Lee, Jung-Rok;Seo, Seung Gyu;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.419-427
    • /
    • 2016
  • This paper proposes a design method of LCL-filter for a grid-connected three-phase inverter using a discontinuous PWM (DPWM) method. When using a DPWM method, many harmonic voltages are generated in the inverter output compared to a continuous PWM (CPWM) method. Therefore, an optimized grid-connected filter design is required for a DPWM method. The proposed design method provides generalized formula to design accurate LCL-filter without trial and error procedures. An inverter side inductance is designed by analyzing the current ripple injected to the grid. The Optimized parameters of LCL-filter can be designed by analyzing the total harmonic distortion (THD) and the ripple attenuation factor of the output current. The proposed LCL filter design method is demonstrated by simulation and experimental results.

Influence of Different Frequency Harmonic Generated by Rectifier on High-speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Yang, Cunxiang;Fan, Xiaobin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1956-1964
    • /
    • 2018
  • Since the stator winding of High-Speed Permanent Magnet Generator (HSPMG) has few winding turns and low inductance value, it is more prone to be influenced by harmonic current. Moreover, the operation efficiency and the torque stability of HSPMG will be greatly influenced by harmonic current. Taking a 117 kW, 60 000 rpm HSPMG as an example, in order to analyze the effects of harmonic current on HSPMG in this paper, the 2-D finite element electromagnetic field model of the generator was established and the correctness of the model was verified by testing the generator prototype. Based on the model, the losses and torque of the generator under different frequency harmonic current were studied. The change rules of the losses and torque were found out. Based on the analysis of the influence of the harmonic phase angle on torque ripple, it is found that the torque ripple could be weakened through changing the harmonic phase angle. Through the analysis of eddy current density in rotor, the change mechanism of the rotor eddy current loss was revealed. These conclusions can contribute to reduce harmonic loss, prevent demagnetization fault and optimize torque ripple of HSPMG used in distributed power supply system.

Single Phase Switched Reluctance Motor Optimum Design Using Response Surface Methodology and Finite Element Method (반응표면법과 유한 요소법을 이용한 단상 스위치드 릴럭턴스 전동기의 최적 설계)

  • Park Jae-Bum;Lim Seung-Bin;Choi Jae-Hak;Kim Jung-Gyo;Lee Ju;Kim Youn-Hyun;Choi Seung-Kil
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.869-871
    • /
    • 2004
  • This paper presents Single Phase Switched Reluctance Motor Optimum Design using Response Surface Methodology and 2-D Finite Element Method that is coupled with the circuit equation of the rectifier and converter. Moreover, A design process for SPSRM has been proposed. The optimum process has been performed with geometric parameters (${\beta_s}\;&\;{\beta_r}$) that influence the inductance variation for design variables. In this paper, SPSRM performances have been analyzed according to variations of electric and geometric parameters after determining design models in terms of efficiency and power factor maximization.

  • PDF

A Design and Performance Investigation of VCO using Inductive Reactance Variation (유도성 리액턴스 변화를 이용한 VCO의 설계 및 동작 연구)

  • Oh, S.H.;Seo, S.T.;Koo, K.W.;Lee, Won-Hui;Hur, Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.405-408
    • /
    • 2000
  • We designed and fabricated VCO using inductive reactance variation at 2GHz. A varactor diode is one of the main devices in VCO, which varies capacitance depending on reverse voltage. In this paper, a varactor diode is not used as a variable capacitive reactance device but as an inductive device. The circuit design and simulation have been carried out using HP-MDS. The fabricated VCO is measured using the HP 8532B spectrum analyzer and the HP 4352B VCO/PLL analyzer. The experimental result shows the phase noise -110dBc/Hz at a 100kHz offset frequency, the control voltage sensitivity of 23MHz/V and a -3.5dBm output power with a D.C. current consumption of 5.9mA. The simulation and measurements show exact agreement except with regard to the oscillation frequency. The measured oscillation frequency is lower than the simulation result because there is some parasitic inductance in the PCB layout.

  • PDF

A Novel IPT System Based on Dual Coupled Primary Tracks for High Power Applications

  • Li, Yong;Mai, Ruikun;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • Generally, a single phase H-bridge converter feeding a single primary track is employed in conventional inductive power transfer systems. However, these systems may not be suitable for some high power applications due to the constraints of the semiconductor switches and the cost. To resolve this problem, a novel dual coupled primary tracks IPT system consisting of two high frequency resonant inverters feeding the tracks is presented in this paper. The primary tracks are wound around an E-shape ferrite core in parallel which enhances the magnetic flux around the tracks. The mutual inductance of the coupled tracks is utilized to achieve adjustable power sharing between the inverters by configuring the additional resonant capacitors. The total transfer power can be continuously regulated by altering the pulse width of the inverters' output voltage with the phase shift control approach. In addition, the system's efficiency and the control strategy are provided to analyze the characteristic of the proposed IPT system. An experimental setup with total power of 1.4kW is employed to verify the proposed system under power ratios of 1:1 and 1:2 with a transfer efficiency up to 88.7%. The results verify the performance of the proposed system.

A Study on the Vibration Characteristics of 2-phase Linear Stepping Motor (2相 Linear Stepping Motor의 진동특성에 관한 연구)

  • 오홍석;김동희;이상호;정도영;김춘삼
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.554-560
    • /
    • 1999
  • In this paper, a vibration suppression method using an energy stored in winding inductance and an induced v voltage of the Linear Stepping Motor(LSM) is shown, and it is applied to a new one-phase excitation method A And a magnetic equivalent circuit is based on the structure of the LSM, and then the electric equivalent circuit of the LSM is derived by solving equations for the magnetic equivalent circuit. Several dynamic characteristics of the LSM are analyzed by the ACSL with the voltage equations, the force equations and the kinetic equation, a and are measured by experimental system.

  • PDF

Coil Design Scheme using Single-Turn FEM Simulation for Efficiency Optimization of Inductive Power Transfer System (단일 권선 FEM 시뮬레이션을 통한 자기유도형 무선전력전송 코일의 효율 최적화 설계)

  • Seung-Ha, Ryu;Chanh-Tin, Truong;Sung-Jin, Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.471-480
    • /
    • 2022
  • Inductive power transfer (IPT) is an attractive power transmission solution that is already used in many applications. In the IPT system, optimal coil design is essential to achieve high power efficiency, but the effective design method is yet to be investigated. The inductance formula and finite element method (FEM) are popular means to link the coil geometric parameters and circuit parameters; however, the former lacks generality and accuracy, and the latter consumes much computation time. This study proposes a novel coil design method to achieve speed and generality without much loss of accuracy. By introducing one-turn permeance simulation in each FEM phase combined with curve fitting and optimization by MATLAB in the efficiency calculation phase, the iteration number of FEM can be considerably reduced, and the generality can be retained. The proposed method is verified through a 100 W IPT system experiment.

Current Controller Design of a Phase Shift Full Bridge Converter for High Current Applications with Inductive Load (대 전류 응용 위한 유도 부하를 갖는 위상 변이 풀 브릿지 컨버터의 전류 제어기 설계)

  • Le, Tat-Thang;Park, Min-Won;Yu, In-Kun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.43-52
    • /
    • 2018
  • This paper presents the performance of a Phase Shift Full Bridge (PSFB) converter with inductive load and a new current control scheme to improve dynamic response of output current with various inductive loads. Enhanced dynamic model is used which includes leakage inductance and inductive load. Effect of changing of inductive load was analyzed in detail. Proposed current control scheme is designed based on phase margin specifications. As a result, the proposed current control scheme helps to improve the dynamic response in comparison with the existing current control scheme. The performance of the designed controller is verified by a 500 A PSFB converter. The results will be utilized for high current applications with high inductive load such as superconducting devices.

A Study on a Meander line employing Periodic Patterned Ground Structure on GaAs MMIC (GaAs MMIC 상에서 주기적 접지구조를 가지는 미앤더 선로에 관한 연구)

  • Jung, Bo-Ra;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.325-331
    • /
    • 2010
  • In this study, highly miniaturized short-wavelength meander line employing eriodically patterned ground structure (PPGS) was developed for application to miniaturized on-chip passive component on GaAs MMIC (monolithic microwave integrated circuit). The meander line employing PPGS showed shorter wavelength and slow-wave characteristic compared with conventional meander line. The wavelength of the meander line employing PPGS structure was 17 % of the conventional meander line on GaAs MMIC. Due to its slow-wave structure, the meander line employing PPGS exhibited large propagation constant than conventional meander line, which resulted in larger phase shift and shunt inductance value. Above results indicate that the meander line employing PPGS is a promising candidate for application to a development of miniaturized on-chip RF components as well as inductor with a high inductance value on GaAs MMIC.

Design of GaAs FET Linearizer with Variable Source Inductance (가변 소스 인덕터를 갖는 GaAs FET 선형화기 설계)

  • An, Jeong-Sig;Lee, Ki-Hong;Kang, Jeong-Jin;Yoo, Jae-Moon;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.221-225
    • /
    • 1999
  • In this paper, a new type of predistortion linearizer has been studied. It employs a series feedback amplifier with a large source inductance as a predistortion linearizer, which provides positive amplitude and negative phase deviations for input Power and can compensate for AM-AM and AM-PM distortions of power amplifier. This predistortion lineariaer consists of only one CaAs FET, large source inductor, input output matching networks and bias circuits. Because of its simple circuit, the linear can be operated over a broad bandwidth and has good thermal stability The characteristics of this linearizer can be easily tuned using source inductor, its gate bias condition. In fabricated linearizer, the third-order intermodulation distortion(IMD) for main amplifier alone is 10.61dBc, and the $IM_3$ for main amplifier with predistorter is 21.91dBc. Therefore, the $IM_3$ characteristic results an improvement of approximately 11dB.

  • PDF