• Title/Summary/Keyword: Phase Gradient Algorithm

Search Result 46, Processing Time 0.01 seconds

Large-Scale Phase Retrieval via Stochastic Reweighted Amplitude Flow

  • Xiao, Zhuolei;Zhang, Yerong;Yang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4355-4371
    • /
    • 2020
  • Phase retrieval, recovering a signal from phaseless measurements, is generally considered to be an NP-hard problem. This paper adopts an amplitude-based nonconvex optimization cost function to develop a new stochastic gradient algorithm, named stochastic reweighted phase retrieval (SRPR). SRPR is a stochastic gradient iteration algorithm, which runs in two stages: First, we use a truncated sample stochastic variance reduction algorithm to initialize the objective function. The second stage is the gradient refinement stage, which uses continuous updating of the amplitude-based stochastic weighted gradient algorithm to improve the initial estimate. Because of the stochastic method, each iteration of the two stages of SRPR involves only one equation. Therefore, SRPR is simple, scalable, and fast. Compared with the state-of-the-art phase retrieval algorithm, simulation results show that SRPR has a faster convergence speed and fewer magnitude-only measurements required to reconstruct the signal, under the real- or complex- cases.

The Effect Analysis and Correction of Phase errors by Satellite Attitude Errors using the FSA for the Spotlight SAR Processing (Spotlight SAR 신호처리기법 FSA를 이용한 위성 자세오차로 인한 위상오차 영향분석 및 보정)

  • Shim, Sang-Heun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.160-169
    • /
    • 2007
  • In this paper, we have described and simulated the effect analysis and correction of phase errors in the SAR rawdata induced by satellite attitude errors such as drift, jitter. This simulation is based on the FSA(Frequency Scaling Algorithm) for high resolution image formation of the Spotlight SAR. Phase errors produce the degradation of SAR image quality such as loss of resolution, geometric distortion, loss of contrast, spurious targets, and decrease in SNR. To resolve this problem, this paper presents method for correction of phase errors using the PGA(Phase Gradient Algorithm) in connection with the FSA. Several results of the phase errors correction are presented for Spotlight SAR rawdata.

Fast Sequential Least Squares Design of FIR Filters with Linear Phase (고속순차 최소자승법에 의한 선형위상 유한응답 여파기의 설계)

  • 선우종성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1987.11a
    • /
    • pp.79-81
    • /
    • 1987
  • In this paper we propose a fast adaptive least squares algorithm for linear phase FIR filters. The algorithm requires 10m multiplications per data point where m is the filter order. Both linear phase cases with constant phase delay and constant group delay are examined. Simulation results demonstrate that the proeposed algorithm is superior to the LMS gradient algorithm and the averaging scheme used for the modified fast Kalman algorithm.

  • PDF

A Unified Phase I - Phase II Semi-Infinite Constrained Optimization Algorithm with a Varying Steering Parameter (가변의 조정변수를 갖는 복합된 1-2 단계 최적화 알고리즘)

  • Yang, Hyun-Suk
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.27-35
    • /
    • 1994
  • It is known that a unified phase I-phase II semi-infinite optimization algorithm with a steerign parameter performs better than the original unified phase I-phase II algorithm. In this paper, the effect of the steering parameter is analized and a new algorithm is presented based on the facts that when the point x is far away from the feasible region, reaching to the feasible region is more important than minimizing the cost functio and that when the point x is near the region, it is more efficient to try to reach the feasible region and to minimize the cost function concurrently. It is also important to consider the relationship between the feasible direction and the gradient of the cost function. Even though changing the steering parameter does not change the rate of convergence of the algorithm, it is shown from examples that given new algorithm is more efficient than the previous ones.

  • PDF

An analysis and modification of a unified phase 1-phase 2 semi-infinite constrained optimization algorithm

  • Yang, Hyun-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.483-487
    • /
    • 1994
  • In this paper, we analize the effect of a steering water used in a unified phase I-phase II semi-infinite constrained optimization algorithm and present a new algorithm based on the facts that when the point x is far away from the feasible region where all the constraints are satisfied, reaching to the feasible region is more important than minimizing the cost function and that when the point x is near the region, it is more efficient to try to reach the feasible region and to minimize the cost function concurrently. Also, the angle between the search direction vector and the gradient of the cost function is considered when the steering parameter value is computed. Even though changing the steering parameter does not change the rate of convergence of the algorithm, we show through some examples that the proposed algorithm performs better than the other algorithms.

  • PDF

Reconfigurable Intelligent Surface assisted massive MIMO systems based on phase shift optimization

  • Xuemei Bai;Congcong Hou;Chenjie Zhang;Hanping Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.2027-2046
    • /
    • 2024
  • Reconfigurable Intelligent Surface (RIS) is an innovative technique to precisely control the phase of incident signals with the help of low-cost passive reflective elements. It shows excellent potential in the sixth generation of mobile communication systems, which not only extends wireless coverage but also boosts channel capacity. Considering that multipath propagation and a high number of antennas are involved in RIS in assisted mega multiple-input multiple-output (MIMO) systems, it suffers from severe channel fading and multipath effects, which in turn lead to signal instability and degradation of transmission performance. To overcome this obstacle, this essay suggests an improved gradient optimization algorithm to dynamically and optimally adjust the phase of the reflective elements to counteract channel fading and multipath effects as a strategy. In order to overcome the optimization problem of falling into local minima, this paper proposes an adaptive learning rate algorithm based on Adagrad improvement, which searches for the global optimal solution more efficiently and improves the robustness of the optimization algorithm. The suggested technique helps to enhance the estimate of channel efficiency of RIS-assisted large MIMO systems, according to simulation results.

Time-Varying Two-Phase Optimization and its Application to neural Network Learning (시변 2상 최적화 및 이의 신경회로망 학습에의 응용)

  • Myeong, Hyeon;Kim, Jong-Hwan
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.179-189
    • /
    • 1994
  • A two-phase neural network finds exact feasible solutions for a constrained optimization programming problem. The time-varying programming neural network is a modified steepest-gradient algorithm which solves time-varying optimization problems. In this paper, we propose a time-varying two-phase optimization neural network which incorporates the merits of the two-phase neural network and the time-varying neural network. The proposed algorithm is applied to system identification and function approximation using a multi-layer perceptron. Particularly training of a multi-layer perceptrion is regarded as a time-varying optimization problem. Our algorithm can also be applied to the case where the weights are constrained. Simulation results prove the proposed algorithm is efficient for solving various optimization problems.

  • PDF

Improvement of ISAR Autofocusing Performance Based on PGA (PGA(Phase Gradient Autofocus)기반 ISAR영상 자동초점기법 성능개선)

  • Kim, Kwan Sung;Yang, Eun Jung;Kim, Chan Hong;Park, Sung Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.680-687
    • /
    • 2014
  • PGA(phase gradient autofocus) has been widely used to remove motion induced phase errors in the ISAR(inverse synthetic aperture radar) imaging. The critical process for the processing time and image quality is windowing stage in PGA. In this paper, the new method to determine window size based on polynomial least square approximation is proposed. Moreover, dominant range bins are selected for efficient phase error estimation, which improve image quality and speed up convergence. The simulation results show that the proposed algorithm provides high quality ISAR images while computational efficiency of inherent PGA is retained.

Performance Improvement of the QAM System using the Dual-Mode NCMA and DPLL (이중모드로 동작하는 NCMA와 DPLL를 이용한 QAM 시스템의 성능향상)

  • 강윤석;안상식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.978-985
    • /
    • 2000
  • Blind equalizers recover the transmitted data using statistical characteristics of the signal alone. Among many alternatives, steepest gradient descent type algorithms such as the CMA and Sato algorithm are most widely utilized in practice. In this paper we propose a dual-mode NCMA algorithm, which combines the advantages of the dual mode CMA and Normalized CMA (NCMA) with the dual mode phase recovery algorithm. In addition, we perform computer simulations to demonstrate the performance improvement of the proposed algorithm with a QAM system. Simulation results show that the presented algorithm has a faster convergence speed and smaller steady-state residual error than the CMA and dual-mode CMA.

  • PDF

Proof-of-principle Experimental Study of the CMA-ES Phase-control Algorithm Implemented in a Multichannel Coherent-beam-combining System (다채널 결맞음 빔결합 시스템에서 CMA-ES 위상 제어 알고리즘 구현에 관한 원리증명 실험적 연구)

  • Minsu Yeo;Hansol Kim;Yoonchan Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.3
    • /
    • pp.107-114
    • /
    • 2024
  • In this study, the feasibility of using the covariance-matrix-adaptation-evolution-strategy (CMA-ES) algorithm in a multichannel coherent-beam-combining (CBC) system was experimentally verified. We constructed a multichannel CBC system utilizing a spatial light modulator (SLM) as a multichannel phase-modulator array, along with a coherent light source at 635 nm, implemented the stochastic-parallel-gradient-descent (SPGD) and CMA-ES algorithms on it, and compared their performances. In particular, we evaluated the characteristics of the CMA-ES and SPGD algorithms in the CBC system in both 16-channel rectangular and 19-channel honeycomb formats. The results of the evaluation showed that the performances of the two algorithms were similar on average, under the given conditions; However, it was verified that under the given conditions the CMA-ES algorithm was able to operate with more stable performance than the SPGD algorithm, as the former had less operational variation with the initial phase setting than the latter. It is emphasized that this study is the first proof-of-principle demonstration of the CMA-ES phase-control algorithm in a multichannel CBC system, to the best of our knowledge, and is expected to be useful for future experimental studies of the effects of additional channel-number increments, or external-phase-noise effects, in multichannel CBC systems based on the CMA-ES phase-control algorithm.