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Fast Sequential Least Squares Design
of FIR Filters with Linear Phase
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ABSTRACT

In this paper we propose a fast adaptive least squares
algorithm for lincar phase FIR filters. The algorithm requires
10 m multiplications per data point where m is the filter
ordcr. Both linear phase cases with constant phase delay and
constant group delay are examincd. Simulation results
demonstrate that the proposed algorithm is superior 10 the
LLMS gradient algorithm and the averaging schemic used for
the modified fast Kalman algorithm.
I. INTRODUCTION

The Jincar phase digital filters are being used exten-
sively in digital signal processing. Such filters are importang
for applications (c.g., noisc cancelling) where frequency disper-
sion duc to phasc nonlincarity & undesirable, Various algo-
rithms for FIR filters with linear phase have been studied
under the assumption that the input and desired rcsponse are
jointly stationary. These algorithms are derived by using a
simple rclation between the linear phase filter and the uncon-
strained one. In the gencral unknown statistics case, there is
no simple relation.

The LMS gradient algorithm has been applied to esti-
mate the coefficients of an adaptive linear phase filter [1}.
A fast algorithm that produces recursively a linear phase
filter for a single block of data has been developed [2].
Other fast algorithms have been studied for the noncausal
symmerric filters, motivated by the smoothing problem [3}.

In this paper, we present an algorithm that is compu-

tationally efficient for sequential least squares estimation. It
utilizes the result of the fast adaptive forward backward least
squares (FBLS) algorithm studied by Kalouptsidis and Theo-
doridis [4).
11. FAST SEQUENTIAL ALGORITHM
In the least squares estimation of an FIR linear phase

filter, the coctficient vector a, & selected to minimize the
total squared crror

N

2 [z (k) xp (), 1 m

k=0
with the constraint

a, =Ja

m 2}

(or a,=-Ja  : constant group dclay)

where z (k) and x, (k) are the desired response and the refer-
ence input samples, respectively, at time &, and the super-
script ¢ denotes transpose, and J & an m xm reflection
(exchange) marrix.

The optimum weight vector of a sym-

metric linear phase filter that satisfies (2) is determined by

Q, (V)a, (N)=r (N)+Jr (¥) 3
where
N N
Q,, (M= x, (k)x), (k)+ 2 Ix, (k)x) (£)J @)
§=D k=0
1, (N)= 3 x,, (k)z (k). &)
k=0

The key to the development of a sequential algorithm
is the cxistence of time update equations. However, the cen-

trosymmetric property of the matrix Q (M) does not render
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(3) to a simple recursive reproduction form. Thercfore, we
use a forward and backward parameter estimation method
usedd in the FBLS algonthm [4]. It can be shown that
minimization of the sum of forward and backward error cner-

gies with respect 10 the unknown parameters c, (N} results in

S, (N)e, (N}=—-5,(N) (6}
where
N N
Sp (V)= 2 x, (kx5 (K)+ T Ix, (k= 1xf(k~1F (7
k=0 k=0
N N
Sp (V)= 2 2, (k) (ko =)+ 2 Ix, (k=1 (k). (8)
ka(} k=0

The recursive reproduction procedure for ¢, (¥) i discussed in
[4]. To solve the linear phase filtering problem with the

FBLS algorithm, we combine the time update cquations with

{3) as
a, (N)=3, (N ~1)~{u, (N)+Ju, (V)]
[Lm N —em(N)] e, (V) )
e, (N)=2 (N)~x, (M)a, (N—1) (10)
where
v, (N =-Q (N ~1)x,, (V). an

Combining (9) and (10) with the FBLS algorithm results in
an recursive algorithm that solves the lcast squares linear
phase filtering problem. It may be shown that the recursion
(9) can be replaced by

a, (N)=a, (N -1)-{w) (V) +Iw] (¥))

L)1 en (W) (12)

where

whN)==8 (N Ix,, (V). (13)
In a similar way, the optimum antisymmetric lincar phase
filter s specified by

3, (N)=a, (N = 1)-[u, V)= Ju (V)

[Ln ) remiN)] e, i) (14)
or

a, (Ny=a_(N—1)+[wh(N)-Iwl (N}
a0 e, (). {15)
Recursions (9), (10), (12), (14), and (15) each require G.5 m
multiplications due to the symmetry property. The number of

multiplications in the FBLS algorithm is approximately 9 m

per rccursion. Hemce, we have a total of 10 m multiplica-
tions.
111. SIMULATIONS

The performance of the proposed tincar phas.e adaptive
filtering algorithm was compared with other linear phase
filtering schemes:

1. LMS gradient algorithm - tapped delay line struc-

ture {1]
2. LMS pradient algorithm - orthogonalized escalutor
structure [1}
3. Averaging scheme used for the modified fast Kal-
man algonthm

In the third scheme, the symmetric constraint is realized by
averaging the unconstrained weight updates for corresponding
weights on vither side of the midsample and using the aver-
age to update both weights, The unconstrained weight updates
are obtained from the fast Kalman algorithm.

Note that the first algorithm requires 3 m multiplica-
tions per data poing, the second one requires 0.5 m? 425
(or 3.5 : m odd) m multiplications, and the third requires
6 m multiplications. The unity-power white Gaussian  input
signal is filtered to generate the desircd response which is
then added by the white Gaussian noisc with zero mean. A
block diagram of the simulation i shown in Fig, 1. The con-

vergence behaviors of the above mentioned algorithms and
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the proposed algorithm for an FIR lincar phase system iden-
tification for different noise power are shown in Figs. 2 and
3. The learning curves, associated with the tap coefficient
error norm, show that the performance of the proposed algo-
rithm is superior to that of the others. The major shortcom-
ing of the LMS algorithm is its slow convergence rate. The
escalator algoritbm improves the convergence rate, requiring
O(mz) multiplications. The avcraging scheme used for the
modified fast Katman algorithm does not efficiently track the
desired response. However, the proposed algorithm over-
comes this disadvantage without a significant increase of the
computational complexity.
1V. CONCLUSION

In this paper, a fast least squares linear phasc adaptive
filtering algorithm has been presented. The algorithm requires
16 m  multiplications for time-sequential recursive filtering.
This reduced computation stems from the fast adaptive for-
ward backward least squares method. Computer simulations
demonstrate that the proposed filter performs better than

other existing filters.
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Fig. 2 Convergence behaviors of linear phase FIR filter with
order of 29 when the noise power is -20dB (100 in-

dependent iterations were done for ensemble average)
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Fig. 3 Convergence behaviors of linear phase FIR filter with

order of 50 when the noise power is -40dB (100 in-

dependent iterations were done for ensemble average)
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