• 제목/요약/키워드: Phase Estimation

Search Result 1,331, Processing Time 0.03 seconds

TEM Specimen Preparation Method of Gibbsite Powder for Quantitative Structure Analysis (정량 구조 분석을 위한 Gibbsite 분말의 TEM 시편 준비법)

  • Kim, Young-Min;Jeung, Jong-Man;Lee, Su-Jeong;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.311-317
    • /
    • 2002
  • There is great requirement on the TEM specimen preparation method with particle size selectivity as a prerequisite for the quantitative structure analysis on the materials such as gibbsite powder, which generally forms a large agglomerate and shows a variation of transition process depending on their sizes. In this experiment, we made an attempt to give a methodology for the TEM specimen preparation of powder with the size selectivity. After mixing 1 wt% gibbsite powder with ethanol solvent, gibbsite suspension was prepared by application of ball-milling and ultrasonification with addition of 0.25 vol% dispersion agent, Darvan C, which was diluted into distilled water by the ratio 1:19. Appling the static sedimentation method to gibbsite suspension after estimation of the sedimentation time by the measurement of accumulative concentration variation, we acquired TEM specimens with well-dispersed and size selected gibbsite particles in nm scale. Overall picture of each sample was taken by SEM and morphology of each dispersed particle was imaged by TEM. Raw and processed gibbsite powders were also examined by XRD to investigate whether they were suffered from phase change during the process or not.

Estimation of Fluid Saturations Using Agarose Standard in NMR Imaging (자기 공명 영상법에서 Agarose 표준 물질을 사용한 유체 포화도의 계산)

  • Kim, Kyung-Hoe
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.160-165
    • /
    • 1999
  • Agarose gels can be used as reference standards for the measurement of fluid properties in porous media because the relaxation properties of the gel reference standard and those of the fluid in porous media can be closely matched. The use of reference standard to determine porosity and saturation is discussed and the requirements for gel NMR properties given. The relaxtion times of agarose gels measured at 2.0 Tesla are illustrated as a function of agarose and paramagnetic impurity ($CuSO_4$) concentrations. This work shows an empirical result between agarose gel composition and gel relaxtion times. The average value for the porosity distribution is 17.7%, which compares well with the value calculated with the gravimetric analysis. Finally, two phase immiscible displacement using agarose gels as a reference standard was performed. The saturation profiles appear to be consistent with what one might calculate for a one-dimensional displacement in a uniform porous media.

  • PDF

A Study on Basic Modeling Method for MTF Analysis of Observation Satellites (관측위성의 MTF 해석을 위한 기본 모델링 기법 연구)

  • Kim, Do-Myung;Kim, Deok-Ryeol;Kim, Nak-Wan;Suk, Jin-Young;Kim, Hee-Seob;Kim, Gyu-Sun;Hyun, Young-Mok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.472-482
    • /
    • 2008
  • A modulation transfer function(MTF) tree is established to estimate the overall MTF of an observation satellite and to analyze the image performance. Basic MTF models relevant to each MTF tree component are represented as mathematical relationship between optics-structural dynamics, thermal deformation, attitude and dynamic characteristics of a satellite and the effects due to the space environment. The Basic MTF models consist of diffraction limited MTF with central obscuration, aberration, defocus, line-of-sight(LOS) jitter, linear motion, detector integration, and so forth. Performance estimation is demonstrated for a virtual earth-observation satellite in order to validate the constructed modeling method. The proposed models enable the system engineers to calculate the overall system MTF and to determine the crucial design parameters that affect the image performance in the conceptual design phase of an observation satellite.

No-Reference Image Quality Assessment Using Complex Characteristics of Shearlet Transform (쉬어렛 변환의 복소수 특성을 이용하는 무참조 영상 화질 평가)

  • Mahmoudpour, Saeed;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.380-390
    • /
    • 2016
  • The field of Image Quality Measure (IQM) is growing rapidly in recent years. In particular, there was a significant progress in No-Reference (NR) IQM methods. In this paper, a general-purpose NR IQM algorithm is proposed based on the statistical characteristics of natural images in shearlet domain. The method utilizes a set of distortion-sensitive features extracted from statistical properties of shearlet coefficients. A complex version of the shearlet transform is employed to take advantage of phase and amplitude features in quality estimation. Furthermore, since shearlet transform can analyze the images at multiple scales, the effect of distortion on across-scale dependencies of shearlet coefficients is explored for feature extraction. For quality prediction, the features are used to train image classification and quality prediction models using a Support Vector Machine (SVM). The experimental results show that the proposed NR IQM is highly correlated with human subjective assessment and outperforms several Full-Reference (FR) and state-of-art NR IQMs.

GPS Baseline Estimation of the $2^{nd}$ Order Geodetic Control Network (2등 측지기준점 GPS 관측데이터의 기선벡터 추정)

  • Lee, Young-Jin;Lee, Hung-Kyu;Kwon, Chan-Oh;Cha, Sang-Heon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.157-164
    • /
    • 2008
  • GPS baseline analysis is a mathematical procedure which estimates a baseline vector from carrier-phase double-differenced observations. Least squares technique is generally applied for the processing and integer ambiguities in the observations should be resolved to obtain maximum accuracy of the solution. In GPS control surveying, after assembling the baseline solutions into a network, adjustment is performed to derive final coordinate sets of unknown points. This paper deals with details of GPS baseline analysis for the $2^{nd}$ order national geodetic network adjustment. After reviewing GPS campaigns carried out by National Geographic Information Institute (NGII) and their observations. technical issues and considerations for the GPS baseline analysis are presented with emphasis of selecting the processing strategies and software. Finally, the analyzed results will be evaluated by examining the close of figures formed by joining the processed baseline vectors.

An analysis angular movement and performance time during handspring salto forward stretched (핸드스프링 몸펴 앞공중1회 비틀기 동작의 소요시간 및 각운동량 분석)

  • Kwon, Oh-Seok;Yoon, Yang-Jin;Seo, Kuk-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.229-244
    • /
    • 2002
  • The purpose of this study were a two-fold: (1) to analyze event and phase of handspring salto forward stretched with turn; (2) to know the differences in the kinematic variables between two groups. A Kwon3D program served for the estimation of this study. The group was divided into three National representative and three well-trained calisthenics in this study. The results of this study revealed that (1) the forward somersault performance was increased when duration time in the air was long during the salto forward stretched that the duration time of Handspring is short, the pressure at takeoff is high, the stride is large, and hands are supporting on the ground quickly; (2) comparing the angular movement of anterior and posterior y axis and vertical z axis, the angular movement of right and left $\times$ axis was higher during the performance. As a result, the national representative players showed better performance in Handspring salto forward stretched with turn.

Parallel Gaussian Processes for Gait and Phase Analysis (보행 방향 및 상태 분석을 위한 병렬 가우스 과정)

  • Sin, Bong-Kee
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.748-754
    • /
    • 2015
  • This paper proposes a sequential state estimation model consisting of continuous and discrete variables, as a way of generalizing all discrete-state factorial HMM, and gives a design of gait motion model based on the idea. The discrete state variable implements a Markov chain that models the gait dynamics, and for each state of the Markov chain, we created a Gaussian process over the space of the continuous variable. The Markov chain controls the switching among Gaussian processes, each of which models the rotation or various views of a gait state. Then a particle filter-based algorithm is presented to give an approximate filtering solution. Given an input vector sequence presented over time, this finds a trajectory that follows a Gaussian process and occasionally switches to another dynamically. Experimental results show that the proposed model can provide a very intuitive interpretation of video-based gait into a sequence of poses and a sequence of posture states.

Estimation of gas-hydrate concentrations from amplitude variation with offset (AVO) analysis of gas-hydrate BSRs in the Ulleung Basin, East Sea (동해 울릉분지 해저 모방 반사면의 AVO 분석을 통한 가스하이드레이트 농도 예측)

  • Yi, Bo-Yeon;Lee, Gwang-Hoon;Ryu, Byong-Jae;Yoo, Dong-Geun;Chung, Bu-Heung;Kang, Nyeon-Keon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.676-679
    • /
    • 2009
  • The bottom-simulating reflector (BSR) is the most commonly observed seismic indicator of gas hydrate in the Ulleung Basin, East Sea. We processed ten representative seismic reflection profiles, selected from a large data set, for amplitude variation with offset (AVO) analysis of the BSR to estimate gas-hydrate concentrations. First, BSRs were divided into five groups based on their seismic amplitudes and associated sediment types: (1) very high-amplitude BSRs in turbidite/hemipelagic sediments, (2) high-amplitude BSRs in debris-flow deposits, (3) moderate-amplitude BSRs in turbidite/hemipelagic sediments, (4) very low-amplitude BSRs in debris-flow deposits, and (5) very low-amplitude BSRs in seismic chimneys. The AVO responses of the group 1 and 3 BSRs are characterized by a rapid decrease and a relatively slow decrease in magnitude with offset, respectively. The AVO response of the group 2 BSR is characterized by a relatively slow increase in magnitude with offset. The AVO responses of the groups 4 and 5 BSRs are characterized by a flat AVO with very small zero-offset amplitude. Theoretical AVO curves, based on the three-phase Biot theory, suggest that the group 1 and 3 BSRs may be related to high (> 40%) concentrations of gas hydrate whereas the group 2 BSRs may indicate low (< 20%) concentrations of gas hydrate. The AVO responses of the group 4 and 5 BSRs cannot be compared with the theoretical models because of their very small zero-offset amplitudes. The comparison of the AVO response of the BSR at the UBGH-04 well with theoretical models suggests about 10% gas-hydrate concentration above the gas-hydrate stability zone.

  • PDF

ALE Finite Element Analysis of the WIG Craft under the Water Impact Loads (ALE 유한 요소법을 적용한 위그선의 착수하중 해석)

  • Lee, Bok-Won;Kim, Chun-Gon;Park, Mi-Young;Jeong, Han-Koo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1082-1088
    • /
    • 2007
  • Demand for high speed sea transportation modes has been increased dramatically last few decades. The WIG(Wing-in-ground effect) is considered as next generation maritime transportation system. In the structural design of high speed marine vessels, an estimation of water impact loads is essential. The dynamic structural responses of the WIG excited by the water impact loads may bring an important contribution to their damage process. The work presented in this paper is focused on the numerical simulation of the water impact on the WIG craft when it lands. It is aimed to study the structural responses of the WIG craft subjected to the water impact loads. The Arbitrary Lagrangian-Eulerian (ALE) finite element method is used to simulate the water impact of the WIG craft during a landing phase. A full 3D shell element is used to model the WIG craft in carbon composites, and a developed FE model is used to investigate the effect of the water impact loads on the structural responses of the WIG craft. In the analysis, two different landing scenarios are considered and their effects on the structural responses are investigated.

Estimation of a Lattice Parameter of Sintered Ni-W Alloy Rods by a Neutron Diffraction Method (중성자 회절법에 의한 Ni-W 합금 소결체의 격자상수 측정)

  • Kim, Chan-Joong;Kim, Min-Woon;Park, Soon-Dong;Jun, Byung-Hyuk;Jang, Serk-Won;Seong, Baek-Seok
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.239-243
    • /
    • 2008
  • Ni-W(1-5 at.%) alloy rods were made by powder metallurgy process including powder mixing, compacting and subsequent sintering. Ni and W powder of appropriate compositions were mixed by a ball milling and isostatically pressed in a rubber mold into a rod. The compacted rods were sintered at $1000^{\circ}C-1150^{\circ}C$ at a reduced atmosphere for densification. The lattice parameters of Ni-W alloys were estimated by a high resolution neutron powder diffractometer. All sintered rods were found to have a face centered cubic structure without any impurity phase, but the diffraction peak locations were linearly shifted with increasing W content. The lattice parameter of a pure Ni rod was $3.5238{\AA}$ which is consistent with the value reported in JCPDS data. The lattice parameter of N-W alloy rods increased by $0.004{\AA}$ for 1 atomic % of W, which indicates the formation of a Ni-W solid solution due to the substitution of nickel atoms by tungsten atoms of larger size.