• Title/Summary/Keyword: Phase Delay Line

Search Result 116, Processing Time 0.02 seconds

Optimization for Relay-Assisted Broadband Power Line Communication Systems with QoS Requirements Under Time-varying Channel Conditions

  • Wu, Xiaolin;Zhu, Bin;Wang, Yang;Rong, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4865-4886
    • /
    • 2017
  • The user experience of practical indoor power line communication (PLC) applications is greatly affected by the system quality-of-service (QoS) criteria. With a general broadcast-and-multi-access (BMA) relay scheme, in this work we investigate the joint source and relay power optimization of the amplify-and-forward (AF) relay systems used under indoor broad-band PLC environments. To achieve both time diversity and spatial diversity from the relay-involved PLC channel, which is time-varying in nature, the source node has been configured to transmit an identical message twice in the first and second signalling phase, respectively. The QoS constrained power allocation problem is not convex, which makes the global optimal solution is computationally intractable. To solve this problem, an alternating optimization (AO) method has been adopted and decomposes this problem into three convex/quasi-convex sub-problems. Simulation results show the fast convergence and short delay of the proposed algorithm under realistic relay-involved PLC channels. Compared with the two-hop and broadcast-and-forward (BF) relay systems, the proposed general relay system meets the same QoS requirement with less network power assumption.

Surface acoustic wave gas sensors by assembling gas chromatography column (가스 크로마토그래피를 부착한 표면탄성파 가스 센서)

  • Yoo, Beom-Keun;Park, Yong-Wook;Kang, Chong-Yun;Yoon, Seok-Jin;Choi, Doo-Jin;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • This paper presents characteristics of surface acoustic wave (SAW) gas sensor for detecting volatile gases such as acetone, methanol, and ethanol by measuring phase shift of output signal. A delay-line by combining with a center frequency of 200 MHz was fabricated on S-T Quartz substrates. Using gas chromatography column, the selectivity of the SAW gas sensor were introduced. Experimental results, which show the phase change of output signal under the absorption of volatile gas on sensor surface, were presented. This SAW gas sensor system may be well suited for a high performance electronic nose system.

Dual-Band Negative Group Delay Circuit Using λ/4 Composite Right/Left-Handed Short Stubs

  • Choi, Heung-Jae;Mun, Tae-Su;Jeong, Yong-Chae;Lim, Jong-Sik;Eom, Soon-Young;Jung, Young-Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.76-82
    • /
    • 2011
  • In this paper, a novel design for a dual-band negative group delay circuit (NGDC) is proposed. Composite right/left-handed (CRLH) ${\lambda}/4$ short stubs are employed as a dual-band resonator. A CRLH ${\lambda}/4$ short stub is composed of a typical transmission line element as the right-handed component and a high-pass lumped element section as the left-handed component. It is possible to simultaneously obtain open impedances at two separate frequencies by the combination of distinctive phase responses of the right/left-handed components. Negative group delay (NGD) can be obtained at two frequencies by using dual-band characteristics of the CRLH stub. In order to achieve a bandwidth extension, the proposed structure consists of a two-stage dual-band NGDC with different center frequencies connected in a cascade. According to the experiment performed, with wide-band code division multiple access (WCDMA) and worldwide interoperability for microwave access (WiMAX), NGDs of $-3.0{\pm}0.4$ ns and $-3.1{\pm}0.5$ ns are obtained at 2.12~2.16 GHz and 3.46~3.54 GHz, respectively.

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.

An Impedance Transformer with Unequal Split Based on S-Parameter Conversion (S-파라미터 변환을 통한 비대칭 분배되는 임피던스 변환기)

  • Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.361-366
    • /
    • 2016
  • This paper presents an arbitrary impedance transformer with unequal split, based on S- to admittance parameter conversion. When compared even/ odd- mode analysis, the parameter conversion design method constitutes a simple design method to include phase delay information and arbitrary port impedances and asymmetrical configurations. To validate this design method, we designed a 50 to $12.5{\Omega}$ impedance transformer with a 3:1 unequal power split, at an operating frequency of 1 GHz. To implement the proposed impedance transformer, the low impedance transmission lines of calculated result are fabricated by the transmission line connected shunt open stub. Good experimental performances were obtained, in full agreement with simulated results.

A Study on The Method of Real-Time Arrythmia monitoring Using Modified Chain Coding (Modified Chain Coding 을 이용한 실시간 부정맥 모니터링 기법에 관한 연구)

  • Yun, Ji-Young;Lee, Jeong-Whan;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.31-35
    • /
    • 1996
  • This paper presents a real time algorithm for monitoring of the arrythmia of ECG signal. A real time monitoring, following by detecting a QRS complex, is the most important. Using 2-dimensional time-delay coordinates which are reconstructed by the phase portrait plotting special trajectory, we detect QRS complexes. In this study, arrythmias are detected by matching the past standard template with tile present pattern when changing abruptly In order to matching with each other, we propose modified chain coding algorithm which applies vetor table consisting of eight orthonormal code(=binary code) to the phase portraits. This algorithm using logical function increases the weight if exceeding to the threshold determinded by correlation value and the distance from a straight line(y=x). Evaluating the performance of the proposed algorithm, we use standard MIT/BIH database. The results are fellowing, 1) Improve the speed of matching template than that of cross-correlation ever has been used. 2) Because the proposed algorithm is robust to varing fiducial point, it is possible to monitor the ECG signal with irregular RR interval. 3) In spite of baseline wandering owing to the low frequency noise, monitoring performance is not reduced.

  • PDF

INTEGRATED DEVELOPMENT ENVIRONMENT FROM MODELING TO IMPLEMENTATION FOR AUTOMOTIVE REAL-TIME EMBEDDED CONTROL SYSTEMS

  • Ma, J.;Youn, J.;Shin, M.;Hwang, I.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.345-351
    • /
    • 2006
  • Software-In-the-Loop Simulation(SILS) and Rapid Control Prototyping(RCP) are proposed as an integrated development environment to support the development process from system design to implementation. SILS is an environment used to simulate control systems with temporal behavior. RCP offers seamless phase shift from design to implementation based on automatic code generation. There are several toolsets that support control system design and analysis. A few of these tools generate the control software automatically. However, most of these design toolsets do not cover temporal behavior which appears after implementation. In earlier toolsets, the design and the implementation of a control system are considered as two separate processes which mean the conventional development process is not connected strictly. SILS/RCP environments work under an identical platform and use the same representation for system modeling. An integrated SILS/RCP environment makes it possible to design controllers under conditions similar to real execution during off-line simulation and to realize controllers in the early design phase. SILS/RCP environments integrate the design and implementation phases which reduce the time-to-market and provide greater performance-assured design. The establishment of SILS/RCP and the practical design approaches are presented.

A Novel High Speed Frequency Sweeping Signal Generator in X-band Based on Tunable Optoelectronic Oscillator

  • Sun, Mingming;Chen, Han;Sun, Xiaohan
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.53-58
    • /
    • 2018
  • A novel X-band high speed frequency sweep signal generator based on a tunable optoelectronic oscillator (OEO) incorporating a frequency-swept laser is presented and the theoretical fundamentals of the design are explained. A prototype of the generator with tuning range from 8.8552 GHz to 10.3992 GHz and a fine step about 8 MHz is achieved. The generated radiofrequency signal with a single sideband (SSB) phase noise lower than -100 dBc/Hz@10KHz is experimentally demonstrated within the whole tunable range, without any narrow RF band-pass filters in the loop. And the tuning speed of the frequency sweep signal generator can reach to over 1 GHz/s benefiting from applying a novel dispersion compensation modular instead of several tens of kilometers of optical fiber delay line in the system.

Digital Active Noise Control System Used Inverse Model (역모델을 이용한 디지털 능동 소음제어 시스템)

  • 정찬수;이강욱;정양응
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.1E
    • /
    • pp.56-63
    • /
    • 1992
  • The poblem of active oise control has been analysed using a adaptive signal processing technique. In this methods, the adaptive signal processor or model predicts the primary sound wave travelling along the acoustic plant and generates the secondary source 180° out of phase which attempts to attempts to attenuate the undesired noise by destructive interference. In the solutions presented here, acoustic propagation delay is considered as a part of the model which used the FIR filter. The effects of error path and auxiliary path transfer functioin are anayzed and a new on=-line technique for error path modeling, adaptive delayed inverse modeling is presented. In this study, using these new concepts, our system can more reduce the noise level in duct to 5dB-15dB than only using LMS algorithm system.

  • PDF

A Study on the Phase Switching Interferometer (위상도환(位相切換) 전파간섭계(電波干涉計)에 대(對)한 연구(硏究))

  • Park, Hong-Suh
    • Journal of The Korean Astronomical Society
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 1971
  • The asymmetry of received intensity pattern within the bandwidth is derived from the analogy of the intensity distribution of two-slit interference. This suggests that the length of $\frac{1}{2}{\lambda}$ delay line should be adjusted to the slightly upper frequency than the central frequency of the radio telescope with a wide bandwith. Some strange communication signals and man-made noises prevented us from obtaining the discernible information from the observed data for the sun. To overcome this difficulties, it is necessary to alter the operating frequency and site. It will be fo1lowed to measure the angular dimensions of the superposed radio sources by changing the distance between two antennas.

  • PDF