• Title/Summary/Keyword: Phase Balance

Search Result 513, Processing Time 0.03 seconds

Application of ASM and PHOENICS for Optimal Operation of Wastewater Treatment Plant (하수처리장 운영의 최적화를 위한 ASM, PHOENICS의 적용)

  • Kim, Joon Hyun;Han, Mi-Duck;Han, Yung Han
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.73-82
    • /
    • 2000
  • This study was implemented to find an optimal model for wastewater treatment processes using PHOENICS(Parabolic, hyperbolic or Elliptic Numerical Integration Code Series) and ASM(Activated Sludge Model). PHOENICS is a general software based upon the laws of physics and chemistry which govern the motion of fluids, the stresses and strains in solids, heat flow, diffusion, and chemical reaction. The wastewater flow and removal efficiency of particle in two phase system of a grit chamber in wastewater treatment plant were analyzed to inquire the predictive aspect of the operational model. ASM was developed for a biokinetic model based upon material balance in complex activated sludge systems, which can demonstrate dynamic and spatial behavior of biological treatment system. This model was applied to aeration tank and settling chamber in Choonchun city, and the modeling result shows dynamic transport in aeration tank. PHOENCS and ASM could be contributed for the optimal operation of wastewater treatment plant.

  • PDF

A Master and Slave Control Algorithm for Parallel Operation of Modular 3-Phase UPS System (모듈형 3상 무정전 전원장치의 병렬 운전을 위한 주종 제어 알고리즘)

  • Lee, Taeyeong;Cho, Younghoon;Lim, Seung Beom;Ahn, Chang Heon
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.479-480
    • /
    • 2016
  • This paper introduces a master and slave control algorithm for parallel operation of UPS system. If each module of UPS system control the output voltage and filter inductor current in parallel operation, it occur unbalanced output power each module. To operate UPS system parallel, it need a algorithm that control output power of modules. A master and slave control algorithm is helpful to balance output power of modules by controlling output current. The effect of a master and slave control algorithm is proved by simulations.

  • PDF

A Study on Stimulus Response Characteristic of PBLG and PBDG (PBLG와 PBDG의 자격 응답특성에 관한 연구)

  • Kim, Beyung-Geun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.47-50
    • /
    • 2002
  • The displacemant current measuring system used for detecting the dynamic behavior of monolayers at the air-water interface is described. It basically consists of a film balance, a pair of electrodes connected to each other through a sensitive ammeter. Here, one electrode is suspended in air and the other electrode is placed in the water. With Maxwell-displacement-current-measuring method, the phase transitons of $Poly-{\gamma}-benzyl_{L}$ -glutamate (PBLG) and $Poly-{\gamma}-benzyl_{D}$-glutamate(PBDG) on a water surface were detected. Measured surface pressure, displacement current and dipole moment of monolayers of PBLG and PBDG on the water surface. Also, we measured that compression velocity (30, 40, 50[mm/min]) when the sample spread volume was about 370[ul]-400[ul] and displacement current that occur when differed temperature. From the result, it is known that current is generated in the range of high surface pressures as compression velocity become faster and increase of temperature.

  • PDF

A New Current Compensation Estimation Method For Single Phase Active Power Filter (단상 액티브 파워 필터를 위한 새로운 전류 보상 방법)

  • 곽상신;이무영
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.819-822
    • /
    • 1998
  • A new active power filter (APF) circuit with a current compesation estimation method is proposed. The current compensation estimation method replaces a current sensor with an estimating circuit and therefore reduces the implementation cost In addition, a simple control scheme, based on the energy balance concept, is adopted to control the voltage of a DC capacitor. Therefore energy change in the DC capacitor can be compensanted in the next cycle. Since a sampling technique is used, a larger DC capacitor voltage ripple can be permissible and a relatively smaller DC capacitor can be used. The proposed method has advantages of the reduction of one current sensor, low implementation cost, and fast transient responses. The theoretical analysis and simulation results are given. The proposed control method is successfully verified by computer simulation.

  • PDF

A Study On The Power Factor Correction Of The Boost Converter Without The Input Current Measurement (입력 전류의 측정이 필요없는 Boost 컨버터의 역률 보정에 관한 연구)

  • Cho, Sang-Jun;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.376-378
    • /
    • 1996
  • This paper presents a new PFC control method which replaces a fast line current measurement with a filtered load current measurement. Using the power balance relation between the input and the output of the boost converter. the input current can be described as the function of load current. Thus the PWM signal which effects the switching control of the boost converter is generated using the PFC input voltage, the PFC output voltage and the load current as input variables. By using a filter between the bridge rectifier and a dc-to-dc converter, the input voltage of the dc-to-dc converter is forced to always maintain above zero volt. Then the input current traces a sinewave in phase. The proposed scheme accomplishes a very high power factor and a low harmonic distortion of the line current. The validity of this scheme is demonstrated through simulation.

  • PDF

Physics-based Surrogate Optimization of Francis Turbine Runner Blades, Using Mesh Adaptive Direct Search and Evolutionary Algorithms

  • Bahrami, Salman;Tribes, Christophe;von Fellenberg, Sven;Vu, Thi C.;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • A robust multi-fidelity optimization methodology has been developed, focusing on efficiently handling industrial runner design of hydraulic Francis turbines. The computational task is split between low- and high-fidelity phases in order to properly balance the CFD cost and required accuracy in different design stages. In the low-fidelity phase, a physics-based surrogate optimization loop manages a large number of iterative optimization evaluations. Two derivative-free optimization methods use an inviscid flow solver as a physics-based surrogate to obtain the main characteristics of a good design in a relatively fast iterative process. The case study of a runner design for a low-head Francis turbine indicates advantages of integrating two derivative-free optimization algorithms with different local- and global search capabilities.

A Study on the Performance Evaluation of Double-Layered Catayst MEA (이중촉매 MEA의 성능평가에 관한 연구)

  • Kim Hong-Gun;Kang Sung-Soo;Kwac Lee-Ku;Kang Young-Woo
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.50-59
    • /
    • 2006
  • An experimental and numerical study is carried out to investigate the performance and the efficiency humidifying Membrane Electrolyte Assembly and having the double-layered catalyst in a fuel cell system which is taken into account the physical and thermal concept. Based on the principals of the problem, the equation of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used for the numerical calculation. A unit cell for $200cm^2$ MEA is assembled and measured for finding better operational situation. After finding the optimal condition, 10 cell stacked PEMFC is fabricated. For the performance evaluation, V-I and power curves are examined in detail by changing the condition of humidity, temperature, pressure, thickness of catalyst and oxidant. It is found that the power is maximized around 500W at 80A.

  • PDF

A Practical Design Methodology Considering Maximum and Starting Characteristics of a Single-phase Line Start PM Motor Based on Magnetic Balance (자기적 평형에 기초한 단상 LSPM 전동기의 정동특성과 기동특성을 고려한 실용적인 설계방법)

  • Baek, Soo-Whang;Kim, Byung-Taek;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.840-841
    • /
    • 2011
  • 본 논문은 평형운전조건 및 고정자 동손 최소화조건이 적용된 단상 LSPM 전동기를 기본모델로 하며 이를 기초로 기동특성 및 정동특성을 고려한 최적설계 방법을 제안한다. 기동특성 및 정동특성을 고려한 설계 변수로는 회전자 도체의 형상과 엔드링의 축방향 길이를 선정 하였으며 이를 통하여 평형운전조건과 고정자 동손최소화 조건을 만족하는 동시에 기동특성 및 정동특성을 고려한 최적모델을 설계하였다. 또한 최적설계 과정을 통하여 얻은 특성들을 유한요소해석을 통해 비교 및 분석하였으며 본 논문에서 제안하는 실용적인 최적설계 방법의 타당성을 검증한다.

  • PDF

An Improved Mechanistic Model to Predict Critical Heat Flux in Subcooled and Low Quality Convective Boiling

  • Kwon, Young-Min;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.236-255
    • /
    • 1999
  • An improved mechanistic model was developed to predict a convective boiling critical heat flux (CHF) in the vertical round tubes with uniform heat fluxes. The CHF formula for subcooled and low quality boiling was derived from the local conservation equations of mass, energy and momentum, together with appropriate constitutive relations. The model is characterized by the momentum balance equation to determine the limiting transverse interchange of mass flux crossing the interface of wall bubbly layer and core by taking account of the convective shear effect due to the frictional drag on the wall-attached bubbles. Comparison between the present model predictions and experimental CHF data from several sources shows good agreement over a wide range of How conditions. The present model shows comparable prediction accuracy with the CHF look-up table of Groeneveld et al. Also the model correctly accounts for the effects of flow variables as well as geometry parameters.

  • PDF

An Evolutionary Optimization Approach for Optimal Hopping of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2420-2426
    • /
    • 2015
  • This paper proposes an evolutionary optimization approach for optimal hopping of humanoid robots. In the proposed approach, the hopping trajectory is generated by a central pattern generator (CPG). The CPG is one of the biologically inspired approaches, and it generates rhythmic signals by using neural oscillators. During the hopping motion, the disturbance caused by the ground reaction forces is compensated for by utilizing the sensory feedback in the CPG. Posture control is essential for a stable hopping motion. A posture controller is utilized to maintain the balance of the humanoid robot while hopping. In addition, a compliance controller using a virtual spring-damper model is applied for stable landing. For optimal hopping, the optimization of the hopping motion is formulated as a minimization problem with equality constraints. To solve this problem, two-phase evolutionary programming is employed. The proposed approach is verified through computer simulations using a simulated model of the small-sized humanoid robot platform DARwIn-OP.