• Title/Summary/Keyword: Phase Array Radar

Search Result 65, Processing Time 0.025 seconds

Development applicable to fixed type radar antenna for small vessels (소형 선박용 고정형 레이더에 적용 가능한 안테나 개발)

  • Cho, Dae-young;Kim, Jeong-hwan;Lee, Myoung-won;Lee, Ju-Hyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.530-536
    • /
    • 2017
  • The accident of the small vessel is increasing due to the growth of the sea and service industry. According to data from National Statistical Office, for 100 ton less than small ship accident, the most of the shipping incident generated in the small ship by 84% of the total shipping incident in 2015. The radar obligatory mounting is enforced to the small vessel in order to conclude this problem. However, the problems including the maintenance cost and transmission power etc. happens high if the existing pulse radar is mounted in the small vessel. In this development, the development is for small ship fixed type radar the object. And in this paper, by using the phase array antenna revolving electronically around the beam, the antenna which it is applicable to the marine fixed type radar which can solve above problem was made and it tested.

Development of Planar Active Phased Array Antenna for Detecting and Tracking Radar (화포탐지 레이다용 C-대역 평면형 능동위상배열 안테나 개발)

  • Kim, Ki-Ho;Kim, Hyun;Kim, Dong-Yoon;Jin, Hyung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.924-934
    • /
    • 2018
  • This paper describes the development and measurement results of C-band planar active phase array antenna for detecting and tracking radar(weapon-locating radar). The antenna is designed with 14 sub-arrays(12 main channels and 2 sidelobe blanking channels and approximately 3,000 elements of transmit-receive channel) to generate transmit and digital receive patterns. Using a near-field measurements facility, G/N, transmit patterns, and received patterns are measured. Receive patterns are implemented with digital beamforming by signal processing. The measurement results demonstrate that antenna design specifications were fulfilled.

Development of the Frequency Synthesizer for Multi-function Radar (다기능 레이더용 주파수합성기 개발)

  • Yi, Hui-min;Choi, Jae-hung;Han, Il-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1099-1106
    • /
    • 2018
  • In this paper, we developed and then analyzed the specifications of the frequency synthesizer which was applied to long range MFR (Multi-function Radar). These specifications were able to guarantee the functions and performance of MFR. MFR was the radar system that used phase array for electronically scanning. This frequency synthesizer made various frequency signals including to STALO (Stable Local Oscillator) for MFR. By analyzing the MFR requirements, we choose the optimal frequency synthesis method and then we got the best performance and functionality including to physical size for this system. We designed and fabricated DDS (Direct Digital Synthesizer)-driven Offset-PLL (Phase Locked Loop) synthesizer to meet the requirements which were low phase noise, fast switching time and low spurious. This synthesizer had less than -131dBc/Hz@100kHz phase noise and less than $4.1{\mu}s$ switching time, respectively.

Development of Four-Way Analog Beamforming Front-End Module for Hybrid Beamforming System

  • Cho, Young Seek
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.4
    • /
    • pp.254-259
    • /
    • 2020
  • Phased-array antennas comprise a demanding antenna design methodology for commercial wireless communication systems or military radar systems. In addition to these two important applications, the phased-array antennas can be used in beamforming for wireless charging. In this study, a four-way analog beamforming front-end module (FEM) for a hybrid beamforming system is developed for 2.4 GHz operation. In a hybrid beamforming scheme, an analog beamforming FEM in which the phase and amplitude of RF signal can be adjusted between the RF chain and phased-array antenna is required. With the beamforming and beam steering capability of the phased-array antennas, wireless RF power can be transmitted with high directivity to a designated receiver for wireless charging. The four-way analog beamforming FEM has a 32 dB gain dynamic range and a phase shifting range greater than 360°. The maximum output RF power of the four-way analog beamforming FEM is 40 dBm (=10 W) when combined the four individual RF paths are combined.

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

Numerical and experimental study of unsteady wind loads on panels of a radar aerial

  • Scarabino, Ana;Sainz, Mariano Garcia;Bacchi, Federico;Delnero, J. Sebastian;Canchero, Andres
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • This work experimentally and numerically analyzes the flow configurations and the dynamic wind loads on panels of rectangular L/h 5:1 cross section mounted on a structural frame of rectangular bars of L/h 0.5:1, corresponding to a radar structure. The fluid dynamic interaction between panels and frame wakes imposes dynamic loads on the panels, with particular frequencies and Strouhal numbers, different from those of isolated elements. The numerical scheme is validated by comparison with mean forces and velocity spectra of a panel wake obtained by wind tunnel tests. The flow configuration is analyzed through images of the numerical simulations. For a large number of panels, as in the radar array, their wakes couple in either phase or counter-phase configurations, changing the resultant forces on each panel. Instantaneous normal and tangential force coefficients are reported; their spectra show two distinct peaks, caused by the interaction of the wakes. Finally, a scaled model of a rectangular structure comprised of panels and frame elements is tested in the boundary layer wind tunnel in order to determine the influence of the velocity variation with height and the three-dimensionality of the bulk flow around the structure. Results show that the unsteady aerodynamic loads, being strongly influenced by the vortex shedding of the supporting elements and by the global 3-D geometry of the array, differ considerably on a panel in this array from loads acting on an isolated panel, not only in magnitude, but also in frequency.

Design of Nx1 Modified Rectangular Loop Array Antenna for Radar Application (레이더용 Nxl 변형 사각 루프 배열 안테나 설계)

  • Jang, Jae-Su;Ko, Jin-Hyun;Ha, Jae-Kwon;Kim, Tae-Hyun;Park, Dong-Chul;Kim, Chan-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.144-151
    • /
    • 2006
  • A rectangular loop antenna for S-band radar is proposed. The proposed loop antenna is the modified type of folded monopole antenna. The feeding line is coplanar stripline with $180^{\circ}$ phase difference for operating in odd mode. The proposed antenna showed return loss of -15.57dB at the center frequency and bandwidth of about 790MHz (> 25%) under the condition of VSWR < 2. The gains of single, 1x2, and 1x4 array loop antennas are 4.3, 7.0, and 10.2dBi, respectively.

Retrodirective Antenna Array Based on Double Conversion Mixer System and Its Application to Cancellation of Electromagnetic Reflections (이중 변환 믹서 방식 역지향 배열 안테나 시스템의 반사 전자기파 상쇄 응용)

  • Ha, Jungje;Jang, Sunghoon;Lee, Yongshik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1181-1189
    • /
    • 2013
  • In this paper, a retrodirective anatenna array system is proposed and the possibility of actively cancelling electromagnetic waves based on this system is investigated. When a rectrodirective array system receives an electromagnetic wave, it can send waves in the direction of the incoming signal without prior knowledge of the direction. In applications to cancellation of radar signals, the system can generate and send signals to the radar so that it cancels the radar signals that are reflected back to the radar. In such a system, isolation between the input and output ports is a key factor that determines the effectiveness of cancellation. In this work, a dual-conversion mixer system is proposed to maximize the isolation. Since this minimizes the difference between the direction of reflection of radar signals and the transmission of cancellation signals, the effectiveness of cancellation is maximized. Experimental results for a metallic plate and metallic cylinder shows as much as 29-dB reduction in reflection for a $2{\times}2$ retrodirective array based on proposed dual-conversion mixer system, which verifies the proposed method of active cancellation.

A Study of T/R Module Output Compensation Method for Active Synthetic Aperture Radar (능동형 SAR 시스템의 송수신 모듈 출력 보정 방법 연구)

  • Yi, Dong-Woo;Lee, Jong-Hwan;Kim, Se-Young;Jeon, Byoung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.955-964
    • /
    • 2010
  • In this paper, a compensation method of the amplitude and phase errors from the T/R(Transmit/Receive) modules in an active SAR(Synthetic Aperture Radar) system is introduced. The errors are defined and classified, and characterized by analyzing the measurement data acquired from the pilot test. To compensate these errors, a control methodology of T/R modules output is proposed. Before the compensation is applied, 16 T/R modules integrated on the active SAR antenna show the amplitude in 28.2~29.0 dBm and the phase in $101.7^{\circ}{\sim}165.2^{\circ}$. After the compensation, the amplitude and phase are distributed in 27.4~28.0 dBm and $116.1^{\circ}{\sim}120.0^{\circ}$ respectively. The antenna beam patterns generated by the array theory with the distributions are compared, and the proposed method is verified as good to apply for the active SAR system.

A Design and Fabrication of the Brick Transmit/Receive Module for K Band (K 대역 브릭형 능동 송수신 모듈의 설계 및 제작)

  • Lee, Ki-Won;Moon, Ju-Young;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.940-945
    • /
    • 2008
  • In this paper, we have designed the Brick Transmit/Receive Module for K-band which can be applied to active phase array radar system. The proposed structure of T/R Module for K band is brick type for MCM(Multi Chip Module) form and the satisfaction of tile type T/R Module can apply to structure of cavity and main characteristic. The fabricated brick type T/R Module confirmed the main characteristic for electrical goal performance in test and this structure can be applied to active phase array radar.