• Title/Summary/Keyword: Phase Array Antenna

Search Result 245, Processing Time 0.025 seconds

4×4 Broadband Phased Array Antenna Using LHTL Based Phase Shifter (LHTL 위상변위기를 이용한 4×4 광대역 위상배열안테나)

  • Park, Soonwoo;Kim, Hongjoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.379-382
    • /
    • 2017
  • This paper proposes a $4{\times}4$ broadband phased array antenna using a Left-Handed Transmission Line (LHTL) based phase shifter. The phased array is constructed with sixteen quasi-Yagi antenna elements and the phase shifters, as well as four power dividers. A key component of the system, the LHTL based phase shifter is able to control a phase delay of incident waves linearly and continuously. The fabricated phased array antenna operate for a frequency range of 800 MHz (1.6 GHz~2.4 GHz). The beam scanning range of the $4{\times}4$ array antenna is ${\pm}27^{\circ}$ horizontally and vertically while the antenna gain is maintained with a variation of ${\pm}1.4dBi$.

An Array Antenna Calibration Algorithm Using LTE Downlink Zadoff-Chu Sequence (LTE 하향링크의 Zadoff-Chu 시퀀스를 이용한 배열 안테나 Calibration 알고리즘)

  • Sun, Tiefeng;Jang, Jae Hyun;Yang, Hyun Wook;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.51-57
    • /
    • 2013
  • Research on calibration of array antenna has become a hot spot in the area of signal processing and it is necessary to obtain the phase mismatch of each antenna channel. This paper presents a new calibration method for an array antenna system. In order to calibrate the phase mismatch of each antenna channel, we used primary synchronization signal (PSS) which exists in LTE downlink frame. Primary synchronization signal (PSS) is based on a Zadoff-Chu sequence which has a good correlation characteristic. By using correlation calculation, we can extract primary synchronization signal (PSS). After extracting primary synchronization signal (PSS), we use it to calibrate and reduce the phase errors of each antenna channel. In order to verify the new array antenna calibration algorithm which is proposed in this paper, we have simulated the proposed algorithm by using MATLAB. The array antenna system consists of two antenna elements. The phase mismatch of first antenna and second antenna is calculated accurately by proposed algorithm in the experiment test. Theory analysis and MATLAB simulation results are shown to verify the calibration algorithm.

The Design of Microstrip Array Antenna with Phase Lock (위상 고정 마이크로스트립 어레이 안테나 설계)

  • 강희조;오양현;고영혁
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.10
    • /
    • pp.791-798
    • /
    • 1991
  • In this paper, microstrip array antenna with the phase lock are designed to consist of main lobe and sidelobe with difference 21.97dB for sharp beam pattern using Tchebyscheff polynominals. Microstrip array antenna with phase lock of 0$^{\circ}$, 45$^{\circ}$, 90$^{\circ}$ are designed, to scan beam for 0$^{\circ}$, 6$^{\circ}$, 12$^{\circ}$ to be 1:2:2:1 for the relative current distribution. The designed microstrip array antenna with phase lock is measured in terms of various characteristics such as return loss, resonant frequency, radiation pattern, bandwidth, beamwidth, and the measurement value and theoretical value agreed with each other. Also, the patch array antenna with the relative current distribution is presented phase shift for beam scanning.

  • PDF

Experimental Studies on the Performance of the Active Phased-Array. Antenna Coupled by Transmission Line (전송선로로 결합된 능동 위상차배열 안테나의 동작특성에 관한 실험적 연구)

  • 최영규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.175-181
    • /
    • 2004
  • In order to increase the coupling efficiency of the Power and Phase of the active Phase way antenna, we have fabricated the active phased-array antenna which is coupled by the transmission line, and investigated the relationship between the length of the coupling transmission line and coupling power and phase. The following three types of driving method -(1) giving the frequency difference between the two active antenna, (2) applying the input signal to the one side of the two antennas, and changing the eigen frequency of the other side antenna, (3) appling the different phase inputs to the active antennas was investigated. The experimental results showed that the interval of the antenna elements has not affected the power and the phase of the antenna.

Design of Rotman Lens for Curved Array Antenna with Minimal Phase Error (최소 위상 오차를 갖는 곡선 배열안테나용 Rotman 렌즈의 설계)

  • Park, Joo-Rae;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1077-1086
    • /
    • 2014
  • We propose a design method of a Rotman lens for curved array antenna applicable to conformal array. In this paper, design equations are derived to obtain an array curve, transmission line lengths of a Rotman lens in conjunction with a curved array antenna, and the phase error of a Rotman lens based on these design equations is minimized through the beam curve optimization procedure and the refocusing procedure. Rotman lenses designed by the proposed design equations and design procedures still maintain 3 focal points, can feed a convex or concave array antenna with circular curve, parabolic curve, V-shaped curve, etc as well as a straight line array antenna, and have minimal phase error.

X-Band Phased Array Antenna Using Ferroelectric $(Ba,Sr)TiO_3$ Coplanar Waveguide Phase Shifter

  • Moon, Seung-Eon;Ryu, Han-Cheol;Kwak, Min-Hwan;Kim, Young-Tae;Lee, Su-Jae;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.677-684
    • /
    • 2005
  • A phased array antenna was fabricated using four-element ferroelectric phase shifters with a coplanar waveguide (CPW) transmission line structure based on a $Ba_{0.6}Sr_{0.4}TiO_3(BST)/MgO$ structure. Epitaxial BST films were deposited on MgO (001) substrates by pulsed laser deposition. To attain the large differential phase shift and small losses for a ferroelectric CPW phase shifter, an impedance-matching-part adding technique between the effective transmission line and connecting cable was used. The return loss and insertion loss for this techniqueadapted BST CPW device were improved with respect to those for a normal BST CPW device. For an X-band phased array antenna system consisting of ferroelectric BST CPW phase shifters, power divider, dc block, patch antenna, and programmed dc power, the steering beam could be tilted by $15^{\circ}$ in either direction.

  • PDF

The Direction Finding Ambiguity Analysis for 3 Element and 4 Element Phase Interferometer DF System (3소자 및 4소자 위상인터페로미터 방탐시스템의 방탐모호성분석)

  • Lee, Jung-Hoon;Woo, Jong-Myung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.544-550
    • /
    • 2014
  • In this paper, we have proposed a novel method which can analysis the direction finding ambiguity analysis for array geometry in 3 channel and 4 channel multiple baseline direction finding system. Generally, the direction finding ambiguity in the 3 element and 4 element phase interferometer direction finding system is calculated by the simulation for the array spacing or by the probability with the selected antenna array spacing. There are some restrictions to obtain the ambiguity of direction finding system in these methods. The former performs a simulation with every antenna array spacing and the latter calculates the ambiguity with the selected antenna array spacing. To overcome those restrictions, This paper proposed the novel method to calculate the ambiguity using the imaginary antenna array spacing and the phase difference prior to the modular operation in direction finder. Using the proposed method, we obtain the ambiguity probability for each of array geometry composed of multiple baseline. After performing the simulation with the selected antenna array spacing to verify the proposed method, we compared the calculated result data with the simulation data.

A 94-GHz Phased Array Antenna Using a Log-Periodic Antenna on a GaAs Substrate

  • Uhm, Won-Young;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.81-85
    • /
    • 2015
  • A 94-GHz phased array antenna using a log-periodic antenna has been developed on a GaAs substrate. The developed phased array antenna comprises four log-periodic antennas, a phase shifter, and a Wilkinson power divider. This antenna was fabricated using the standard microwave monolithic integrated circuit (MMIC) process including an air bridge for unipolar circuit implementations on the same GaAs substrate. The total chip size of the fabricated phased array antenna is 4.8 mm × 4.5 mm. Measurement results showed that the fabricated phased array antenna had a very wide band performance from 80 GHz to 110 GHz with return loss characteristics better than -10 dB. In the center frequency of 94 GHz, the fabricated phased array antenna showed a return loss of -16 dB and a gain of 4.43 dBi. The developed antenna is expected to be widely applied in many applications at W-band frequency.

Slot Array Antenna with Phase Reversal Device for WLAN Application (WLAN 적용을 위한 위상 반전 장치를 갖는 슬롯 배열 안테나)

  • Park, Sung-Il;Jung, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.745-750
    • /
    • 2018
  • A Slot array antenna with a phase reversal device is presented for WLAN operation. The array factor and radiation characteristics of the antenna are investigated. For practical application of the radiation pattern, the phase reversal device is used. The antenna is formed on both sides of the substrate ($30mm{\times}96mm{\times}0.2mm$). The measured results show that the proposed antenna has a 10 dB return loss bandwidth of 156 MHz (2.392 - 2.548 GHz) and the measured maximum gain was 8.31 dBi.

A phase calibration method of active phased array antennas for satellite communication

  • Noh, Haeng-Sook;Jeon, Soon-Ik;Chae, Jong-seock
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.519-522
    • /
    • 2002
  • An active phased array antenna consists of many channels. Each channel has a different initial phase shift and gain because of the inequality in the active circuits themselves, interface between radiators and active circuits, and beam-forming circuits and other antenna system configurations. This raises an inherent problem in active phased array antennas. To compensate for this problem the initial phase and gain of each channel should be calibrated. This paper presents an efficient calibration method for an initial phase variation of each channel in active phased array antennas. We tested our method in an active phased array antenna, and obtained good results in the radiation pattern and beam direction of antenna.

  • PDF