DOI QR코드

DOI QR Code

Slot Array Antenna with Phase Reversal Device for WLAN Application

WLAN 적용을 위한 위상 반전 장치를 갖는 슬롯 배열 안테나

  • 박성일 (동신대학교 정보통신공학과) ;
  • 정진우 (전남대학교 전자컴퓨터공학과)
  • Received : 2018.06.12
  • Accepted : 2018.08.15
  • Published : 2018.08.31

Abstract

A Slot array antenna with a phase reversal device is presented for WLAN operation. The array factor and radiation characteristics of the antenna are investigated. For practical application of the radiation pattern, the phase reversal device is used. The antenna is formed on both sides of the substrate ($30mm{\times}96mm{\times}0.2mm$). The measured results show that the proposed antenna has a 10 dB return loss bandwidth of 156 MHz (2.392 - 2.548 GHz) and the measured maximum gain was 8.31 dBi.

WLAN 통신 기술 적용을 위한 위상 반전 장치를 갖는 슬롯 배열 안테나가 제안되었다. 제안된 안테나 설계를 위해 배열 안테나의 Array Factor와 방사 특성을 분석하였고 실질적인 적용이 가능한 방사 패턴을 위해, 위상 반전 장치를 사용하였다. 제안된 안테나는 $30mm{\times}96mm{\times}0.2mm$의 유전 기판의 양면에 구현되었다. 제안된 안테나의 측정 결과, 임피던스 대역폭은 156 MHz (2.392-2.548 GHz)이고, 최대 이득은 8.31 dBi이다.

Keywords

References

  1. M. Ding, R. Jin, J. Geng, X. Guo, and J. Chen, "A high-gain dual-band directional / omnidirectional reconfigurable antenna for WLAN systems," International J. of RF and Microwave Computer-Aided Engineering, vol. 18, no. 3, 2008, pp. 225-232. https://doi.org/10.1002/mmce.20281
  2. J. Yoon, "A Design and Implementation of Dual-band Monopole Antenna with two arc-shaped line for WLAN application," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 6, 2017, pp.1049-1056. https://doi.org/10.13067/JKIECS.2017.12.6.1049
  3. J. Jung, H. Lee, and Y. Lim, "Compact monopole antenna for dual ISM bands (2.4 and 5.8 GHz) operation," Microwave and Optical Technology Letters, vol. 51, no. 9, 2009, pp. 2227-2229. https://doi.org/10.1002/mop.24519
  4. S. Park and J. Jung, "WLAN Dual Band Dipole Antenna with Parasitic Elements and Reflector for High Gain Operation," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 2, 2018, pp.341-347. https://doi.org/10.13067/JKIECS.2018.13.2.341
  5. S. Park and J. Jung, "Modified Yagi dipole Antenna for WLAN dual-band Operation," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 3, 2018, pp.533-538. https://doi.org/10.13067/JKIECS.2018.13.3.533
  6. R. Kupta and G. Kumar, "High-gain multilayer $2{\times}2$ antenna array for wireless applications," Microwave and Optical Technology Letters, vol. 50, no. 11, 2008, pp. 2911-2917. https://doi.org/10.1002/mop.23835
  7. T. Judasz, W. Ecklund, and B. Balsley, "The coaxial collinear antenna: current distribution from the cylindrical antenna equation," IEEE Transactions on Antennas and Propagation, vol. 35, no. 3, 1987, pp. 327-331. https://doi.org/10.1109/TAP.1987.1144095
  8. G. DeJean and M. Tentzeris, "A New High-Gain Microstrip Yagi Array Antenna with a High Front-to-Back (F/B) Ratio for WLAN and Millimeter-Wave Applications," IEEE Transactions on Antennas and Propagation, vol. 55, no. 2, 2007, pp. 298-304. https://doi.org/10.1109/TAP.2006.889818
  9. Y. Liu, T. Tseng, and K. Wong, "High-gain printed dipole antenna," Microwave and optical technology letters, vol. 46, no. 3, 2005, pp.214-218. https://doi.org/10.1002/mop.20948
  10. A. Mak, C. Rowell, and R. Murch, "Low Cost Reconfigurable Landstorfer Planar Antenna Array," IEEE Transactions on Antennas and Propagation, vol. 57, no. 10, 2009, pp. 3051-3061. https://doi.org/10.1109/TAP.2009.2028593