• 제목/요약/키워드: Pharmacological mechanisms

검색결과 286건 처리시간 0.027초

Licochalcone D Inhibits Skin Epidermal Cells Transformation through the Regulation of AKT Signaling Pathways

  • Sun-Young Hwang;Kwanhwan Wi;Goo Yoon;Cheol-Jung Lee;Soong-In Lee;Jong-gil Jung;Hyun-Woo Jeong;Jeong-Sang Kim;Chan-Heon Choi;Chang-Su Na;Jung-Hyun Shim;Mee-Hyun Lee
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.682-691
    • /
    • 2023
  • Cell transformation induced by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) is a critical event in cancer initiation and progression, and understanding the underlying mechanisms is essential for the development of new therapeutic strategies. Licorice extract contains various bioactive compounds, which have been reported to have anticancer and anti-inflammatory effects. This study investigated the cancer preventive efficacy of licochalcone D (LicoD), a chalcone derivative in licorice extract, in EGF and TPA-induced transformed skin keratinocyte cells. LicoD effectively suppressed EGF-induced cell proliferation and anchorage-independent colony growth. EGF and TPA promoted the S phase of cell cycle, while LicoD treatment caused G1 phase arrest and down-regulated cyclin D1 and up-regulated p21 expression associated with the G1 phase. LicoD also induced apoptosis and increased apoptosis-related proteins such as cleaved-caspase-3, cleaved-caspase-7, and Bax (Bcl2-associated X protein). We further investigated the effect of LicoD on the AKT signaling pathway involved in various cellular processes and found decreased p-AKT, p-GSK3β, and p-NFκB expression. Treatment with MK-2206, an AKT pharmacological inhibitor, suppressed EGF-induced cell proliferation and transformed colony growth. In conclusion, this study demonstrated the potential of LicoD as a preventive agent for skin carcinogenesis.

효소처리를 이용한 마늘 추출물이 Lipopolysaccharide 유발 급성 장염 모델에 미치는 효과 및 기전 연구 (Study of the Effect and Underlying Mechanism of Enzyme-Treated Garlic Extract on a Lipopolysaccharide-Induced Acute Colitis Model)

  • 김민주;신미래;최학주;노성수
    • 대한한방내과학회지
    • /
    • 제44권6호
    • /
    • pp.1243-1255
    • /
    • 2023
  • Objective: This study aims to explore the pharmacological effects and mechanisms of enzyme (Viscozyme)-treated garlic extract (EG) in an animal model of acute enteritis induced by lipopolysaccharide (LPS). Methods: The experiment included four subgroups: normal, control, EG200 (treated with 200 mg/kg EG), and EG400 (treated with 400 mg/kg EG). Drug administration lasted 3 days, followed by the induction of acute enteritis in all groups (except normal) through the intraperitoneal administration of 20 mg/kg of LPS 1 h after the last oral dose. Autopsy was conducted 24 h later to collect serum and colon tissue. Serum was analyzed for reactive oxygen species (ROS) and C-reactive protein (CRP), while Western blotting was performed on the colon tissue. Results: After analyzing the ROS and CRP levels in serum, the EG treatment group exhibited a significant decrease compared with the control group. The EG treatment group exhibited a significant decrease in the activation of the mitogen-activated protein kinases (MAPKs)/nuclear factor-kappa B p65 (NF-κB) pathway compared with the control group. EG administration significantly regulated apoptosis-related factors, including B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X, cysteine aspartyl-specific protease-3, and cytochrome C. Conclusions: EG treatment in mice with LPS-induced acute colitis reduced the ROS and CRP levels, suppressed the MAPKs/NF-κB pathway in the colon, and effectively alleviated acute enteritis by modulating apoptosis-related factors. Based on these findings, EG emerges as a promising candidate for the prevention and treatment of acute colitis, showing its potential therapeutic efficacy in this experimental model.

네트워크 약리학을 이용한 윤폐환(潤肺丸)의 COPD 치료 효능 및 작용기전 연구 (Network Pharmacology-based Prediction of Efficacy and Mechanism of Yunpye-hwan Acting on COPD)

  • 김민주;양아람;권빛나;김동욱;배기상
    • 대한본초학회지
    • /
    • 제39권3호
    • /
    • pp.37-47
    • /
    • 2024
  • Objectives : Because predicting the potential efficacy and mechanisms of Korean medicines is challenging due to their high complexity, employing an approach based on network pharmacology could be effective. In this study, network pharmacological analysis was utilized to anticipate the effects of YunPye-Hwan (YPH) in treating Chronic obstructive pulmonary disease (COPD). Methods : Compounds and their related target genes of YPH were gathered from the TCMSP and PubChem databases. These target genes of YPH were subsequently compared with gene sets associated with COPD to assess correlation. Next, core genes were identified through a two-step screening process, and finally, functional enrichment analysis of these core genes was conducted using both Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways. Results : A total of 15 compounds and 437 target genes were gathered, resulting in a network comprising 473 nodes and 14,137 edges. Among them, 276 genes overlapped with gene sets associated with COPD, indicating a significant correlation between YPH and COPD. Functional enrichment analysis of the 18 core genes revealed biological processes and pathways such as "miRNA Transcription," "Nucleic Acid-Templated Transcription," "DNA-binding Transcription Factor Activity," "MAPK signaling pathway," and "TNF signaling pathway" were implicated. Conclusion : YPH exhibited significant relevance to COPD by modulating cell proliferation, differentiation, inflammation, and cell death pathways. This study could serve as a foundational framework for further research investigating the potential use of YPH in the treatment of COPD.

Pectolinarigenin ameliorated airway inflammation and airway remodeling to exhibit antitussive effect

  • Quan He;Weihua Liu;Xiaomei Ma;Hongxiu Li;Weiqi Feng;Xuzhi Lu;Ying Li;Zi Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권3호
    • /
    • pp.229-237
    • /
    • 2024
  • Cough is a common symptom of several respiratory diseases. However, frequent coughing from acute to chronic often causes great pain to patients. It may turn into cough variant asthma, which seriously affects people's quality of life. For cough treatment, it is dominated by over-the-counter antitussive drugs, such as asmeton, but most currently available antitussive drugs have serious side effects. Thus, there is a great need for the development of new drugs with potent cough suppressant. BALB/c mice were used to construct mice model with cough to investigate the pharmacological effects of pectolinarigenin (PEC). Hematoxylin-eosin and Masson staining were used to assess lung injury and airway remodeling, and ELISA was used to assess the level of inflammatory factor release. In addition, inflammatory cell counts were measured to assess airway inflammation. Airway hyperresponsiveness assay was used to assess respiratory resistance in mice. Finally, we used Western blotting to explore the potential mechanisms of PEC. We found that PEC could alleviate lung tissue injury and reduce the release of inflammatory factors, inhibit of cough frequency and airway wall collagen deposition in mice model with cough. Meanwhile, PEC inhibited the Ras/ERK/c-Fos pathway to exhibit antitussive effect. Therefore, PEC may be a potential drug for cough suppression.

네트워크 약리학을 활용한 알레르기 비염에서의 몰약의 치료 효능 및 기전 예측 (Network pharmacology-based prediction of efficacy and mechanism of Myrrha acting on Allergic Rhinitis)

  • 임예빈;권빛나;김동욱;배기상
    • 대한한의학회지
    • /
    • 제45권1호
    • /
    • pp.114-125
    • /
    • 2024
  • Objectives: Network pharmacology is an analysis method that explores drug-centered efficacy and mechanism by constructing a compound-target-disease network based on system biology, and is attracting attention as a methodology for studying herbal medicine that has the characteristics for multi-compound therapeutics. Thus, we investigated the potential functions and pathways of Myrrha on Allergic Rhinitis (AR) via network pharmacology analysis and molecular docking. Methods: Using public databases and PubChem database, compounds of Myrrha and their target genes were collected. The putative target genes of Myrrha and known target genes of AR were compared and found the correlation. Then, the network was constructed using STRING database, and functional enrichment analysis was conducted based on the Gene Ontology (GO) Biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways. Binding-Docking stimulation was performed using CB-Dock. Results: The result showed that total 3 compounds and 55 related genes were gathered from Myrrha. 33 genes were interacted with AR gene set, suggesting that the effects of Myrrha are closely related to AR. Target genes of Myrrha are considerably associated with various pathways including 'Fc epsilon RI signaling pathway' and 'JAK-STAT signaling pathway'. As a result of blinding docking, AKT1, which is involved in both mechanisms, had high binding energies for abietic acid and dehydroabietic acid, which are components of Myrrha. Conclusion: Through a network pharmacological method, Myrrha was predicted to have high relevance with AR by regulating AKT1. This study could be used as a basis for studying therapeutic effects of Myrrha on AR.

마우스에서 울금 에탄올 추출물의 단회 경구투여 독성에 관한 연구 (Acute Oral Toxicity Study of Ethanol Extract of Curcuma longa L. in Mice)

  • 김수환;이형선
    • 생명과학회지
    • /
    • 제24권10호
    • /
    • pp.1132-1136
    • /
    • 2014
  • 울금(Curcuma longa L., turmeric)은 생강과(Zingiberaceae)에 속하는 다년생 초본 식물로 전통적으로 한약재, 향신료 및 식용으로 사용되어 왔다. 강력한 항산화 작용, 울금 에탄올 추출물의 항산화 활성, 항돌연변이성, 항염증, 항암성 및 항균성 효과 등이 보고되고 있다. 그러나 울금에 대한 생리활성 연구는 이미 많이 이루어져 있는 반면 울금에 대한 독성평가는 이루어지지 않았다. 본 연구는 울금 에탄올 추출물에 대한 안정성을 확보하기 위하여 단회경구투여 독성시험을 BALB/c 마우스를 이용하여 실시하였다. 울금 에탄올 추출물은 0, 20, 200, 2,000 mg/kg 농도로 경구 투여하였으며, 14일간 관찰 후 희생시켰다. 울금 에탄올 추출물 투여 후 운동성, 비정상적 임상증상, 부검 소견상, 체중의 유의적인 변화는 관찰되지 않았다. 혈액 생화학적 측정과 다양한 장기의 무게에서도 유의적인 변화를 관찰할 수 없었다. 이들 결과로 미루어볼 때 울금 에탄올 추출물의 단회 투여에 따른 치사량은 2,000 mg/kg 이상을 상회할 것으로 추정되며 급성독성에 어떠한 유해성이 없다는 것을 의미한다.

흰쥐에서 다시마 식이가 메트폴민의 체내동태 및 당 흡수에 미치는 영향 (The Effects of Laminaria japonica Diet on the Pharmacokinetics of Metformin and Glucose Absorption in Rats)

  • 최한곤;장보현;이종달;김정애;유봉규;용철순
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권3호
    • /
    • pp.171-178
    • /
    • 2003
  • Drug interactions with food, on occasion, lead to serious nutritional and functional changes in the body as well as alterations of pharmacological effect. It, therefore, should be necessary to take drug interactions with food into consideration for effective and safe therapeutics. Diabetes mellitus is a heterogeneous group of disorders characterzed by abnormal glucose homeostasis, resulting in hyperglycemia, and is associated with increased risk of microvascular, macrovascular, and neuropathic complications. However, the precise mechanism of diabetes mellitus remains unclear. Three basic objectives in the care of diabetic patients are maintaining optimal nutrition, avoiding hypo- or hyperglycemia and preventing complications. Laminaria japonica is a brown macroalgae which can be used as a functional diet due to high content of diatery fiber. The purpose of this study was to investigate the effect of Laminaria japonica diet on the pharmacokinetics of metformin which are frequently used in the treatment of diabetes. Diabetic rats induced by streptozotocin were employed in this study. Blood concentrations of oral hypoglycemic agent, metformin, were measured by HPLC and resultant pharmacokinetic parameters were calculated by RSTRIP. The mechanisms of drug interaction with food were evaluated on the basis of pharmacokinetic parameters such as $k_{a},\;t_{1/2},\;C_{max},\;t_{max}$, and AUC. Administration of metformin in normal and diabetic rats treated with Laminaria japonica diet showed significant decrease in AUC, $C_{max},\;and\;k_a$, and increase in $t_{max}$, compared to those with normal diet. This might result from adsortion of metformin on components of Laminaria japonica, causing delayed absorption. The oral glucose test showed that Laminaria japonica diet could lower blood glucose level probably through either inhibiting the activity of disaccharidases, intestinal digestive enzymes, or delaying the absorption of glucose. More studies should be followed to fully understand pharmacokinetic changes of metformin caused by long-term Laminaria japonica diet.

Interactions between Collagen IV and Collagen-Binding Integrins in Renal Cell Repair after Sublethal Injury

  • Nony, Paul A,;Schnellmann, Rick G.
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.80-88
    • /
    • 2002
  • Recent studies demonstrate that collagen IV selectively pro-motes the repair of physiological processes in sublethally injured renal proximal tubular ceils (RPTC). We sought to further define the mechanisms of cell repair by measuring the effects of toxicant injury and stimulation of repair by L-ascorbic acid-2-phosphate (AscP), exogenous collagen IV, or function-stimulating integrin antibodies on the expression and subcellular localization of collagen-binding integrins (CBI) in RPTC. Expression of CBI subunits ${\alpha}_1$, ${\alpha}_2$, and ${\beta}_1$ in RPTC was not altered on day 1 after sublethal injury by S-(1,2-dichlorovinyl)-L-cysteine (DCVC). On day 6, expression of ${\alpha}_1$ and ${\beta}_1$ subunits remained unchanged, whereas a 2.2-fold increase in ${\alpha}_2$ expression was evident in injured RPTC. CBI localization in control RPTC was limited exclusively to the basal membrane. On day 1 after injury, RPTC exhibited a marked inhibition of active $Na^+$ transport and a loss of cell polarity characterized by a decrease in basal CBI localization and the appearance of CBI on the apical membrane. On day 6 after injury, RPTC still exhibited marked inhibition of active $Na^+$ transport and localization of CBI to the apical membrane. However, DCVC-injured RPTC cultured in pharmacological concentrations of AscP (500 ${\mu}$M)or exogenous collagen IV (50 ${\mu}$g/ml) exhibited an increase inactive $Na^+$ transport, relocalization of CBI to the basal membrane, and the disappearance of CBI from the apical membrane on day 6. Function-stimulating antibodies to CBI ${\beta}_1$ did not promote basal relocalization of CBI despite stimulating the repair of $Na^+$/$K^+$-ATPase activity on day 6 after injury. These data demonstrate that DCVC disrupts integrin localization and that physiological repair stimulated by AscP or collagen IV is associated with the basal relocalization of CBI in DCVC-injured RPTC. These data also suggest that CBI-mediated repair of physiological functions may occur independently of integrin relocalization.

  • PDF

백화사설초(白花蛇舌草), 산자고(山慈姑), 절패모(浙貝母)에 의한 MDA-MB-231 인체 유방암 세포에서의 항암 효과 (Anti-cancer Effects of Oldenlandia diffusa, Cremastra appendiculata and Fritillaria thunbergii on MDA-MB-231 Human Breast Cancer Cells)

  • 진명호;박선영;강유경;심원석;허희수;홍상훈;박철;최영현;박상은
    • 대한한방내과학회지
    • /
    • 제35권2호
    • /
    • pp.133-144
    • /
    • 2014
  • O. diffusa, C. appendiculata and F. thunbergii are reported to possess many pharmacological activities including anti-oxidant, anti-inflammatory, anti-hypertension, anti-diabetic and anti-cancer effects. However, their anti-cancer activities in human breast cancer have not been clearly elucidated yet. Objectives: In the present study, we compared the in vitro cytotoxic effects of single and complex treatment of O. diffusa, C. appendiculata and F. thunbergii in human breast cancer MDA-MB-231 cells. Methods: After we treated human breast cancer MDA-MB-231 cells with O. diffusa, C. appendiculata and F. thunbergii. we evaluated viability, growth inhibition, morphological changes, apoptotic body formation, measurement of the cell cycle and formation of DNA fragmentation of these cells. Results: We found that single treatment of O. diffusa and F. thunbergii could inhibit cell proliferation in human breast cancer MDA-MB-231 cells. However, complex treatment of O. diffusa, C. appendiculata and F. thunbergii had weak or no effect on the cell proliferation of MDA-MB-231 cells. The first, anti-proliferative effects of O. diffusa in MDA-MB-231 cells was associated with G2/M arrest of cell cycle and apoptotic cell death. The second, anti-proliferative effect of F. thunbergii in MDA-MB-231 cells was associated with apoptotic cell death. Conclusions: Taken together, these findings suggest that O. diffusa and F. thunbergii may be a potential chemotherapeutic agent for the control of human breast cancer cells, further studies will be needed to identify the molecular mechanisms.

원지 디클로로메탄분획이 CT105에 의한 신경세포 상해에 미치는 영향 (The Effects of Polygala Tenuifolia DM Fraction on CT105-injuried Neuronal Cells)

  • 이상원;김상호;김태헌;강형원;류영수
    • 동의생리병리학회지
    • /
    • 제18권2호
    • /
    • pp.507-516
    • /
    • 2004
  • Alzheimer's disease(AD) is a geriatric dementia that is widespread in old age. In the near future AD will be the commom disease in public health service. Although a variety of oriental presciptions in study POD(Polygala tenuifolia extracted from dichlorometan) have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet fully elucidated. It has been widely believed that AP peptide divided from APP causes apoptotic neurotoxicity in AD brain. However, recent evidence suggests that CT105, carboxy terminal 105 aminoacids peptide fragment of APP, may be an important factor causing neurotoxicity in AD. SK-N-SH cells expressed with CT105 exhibited remarkable apoptotic cell damage. Based on morphological observations by phase contrast microscope and NO formation in the culture media, the CT105-induced cell death was significantly inhibited by POD. In addition, AD is one of brain degeneration disease. So We studied on herbal medicine that have a relation of brain degeneration. From old times, In Oriental Medicine, PO water extract has been used for disease in relation to brain degeneration. We were examined by ROS formation, neurite outgrowth assay and DPPH scravage assay. Additionally, we investigated the association between the CT105 and neurite degeneration caused by CT105-induced apoptotic response in neurone cells. We studied on the regeneratory and inhibitory effects of anti-Alzheimer disease in pCT105-induced neuroblastoma cell lines by POD. Findings from our experiments have shown that POD inhibits the synthesis or activities of CT105, which has neurotoxityies and apoptotic activities in cell line. In addition, treatment of POD(>50 ㎍/㎖ for 12 hours) partially prevented CT(105)-induced cytotoxicity in SK-N-SH cell lines, and were inhibited by the treatment with its. POD(>50 ㎍/㎖ for 12 hours) repaired CT105-induced neurite outgrowth when SK-N-SH cell lines was transfected with CT105. As the result of this study, In POD group, the apoptosis in the nervous system is inhibited, the repair against the degerneration of Neuroblastoma cells by CT105 expression is promoted. Decrease of memory induced by injection of scopolamin into rat was also attenuted by POD, based on passive avoidance test. Taken together, POD exhibited inhibition of CT105-induced apoptotic cell death. POD was found to reduce the activity of AchE and induced about the CA1 in rat hippocampus. Base on these findings, POD may be beneficial for the treatment of AD.