DOI QR코드

DOI QR Code

Network Pharmacology-based Prediction of Efficacy and Mechanism of Yunpye-hwan Acting on COPD

네트워크 약리학을 이용한 윤폐환(潤肺丸)의 COPD 치료 효능 및 작용기전 연구

  • Minju Kim (School of Korean Medicine, Wonkwang University) ;
  • Aram Yang (School of Korean Medicine, Wonkwang University) ;
  • Bitna Kweon (School of Korean Medicine, Wonkwang University) ;
  • Dong-Uk Kim (School of Korean Medicine, Wonkwang University) ;
  • Gi-Sang Bae (School of Korean Medicine, Wonkwang University)
  • 김민주 (원광대학교 한의과대학) ;
  • 양아람 (원광대학교 한의과대학) ;
  • 권빛나 (원광대학교 한의과대학) ;
  • 김동욱 (원광대학교 한의과대학) ;
  • 배기상 (원광대학교 한의과대학)
  • Received : 2024.04.11
  • Accepted : 2024.05.25
  • Published : 2024.05.30

Abstract

Objectives : Because predicting the potential efficacy and mechanisms of Korean medicines is challenging due to their high complexity, employing an approach based on network pharmacology could be effective. In this study, network pharmacological analysis was utilized to anticipate the effects of YunPye-Hwan (YPH) in treating Chronic obstructive pulmonary disease (COPD). Methods : Compounds and their related target genes of YPH were gathered from the TCMSP and PubChem databases. These target genes of YPH were subsequently compared with gene sets associated with COPD to assess correlation. Next, core genes were identified through a two-step screening process, and finally, functional enrichment analysis of these core genes was conducted using both Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways. Results : A total of 15 compounds and 437 target genes were gathered, resulting in a network comprising 473 nodes and 14,137 edges. Among them, 276 genes overlapped with gene sets associated with COPD, indicating a significant correlation between YPH and COPD. Functional enrichment analysis of the 18 core genes revealed biological processes and pathways such as "miRNA Transcription," "Nucleic Acid-Templated Transcription," "DNA-binding Transcription Factor Activity," "MAPK signaling pathway," and "TNF signaling pathway" were implicated. Conclusion : YPH exhibited significant relevance to COPD by modulating cell proliferation, differentiation, inflammation, and cell death pathways. This study could serve as a foundational framework for further research investigating the potential use of YPH in the treatment of COPD.

Keywords

Acknowledgement

본 연구는 2024년도 원광대학교 교비지원에 의해 수행되었습니다

References

  1. Yuan H-j, Xue Y-t. To Explore the Key Active Compounds and Therapeutic Mechanism of Guizhi Gancao Decoction in Coronary Heart Disease by Network Pharmacology and Molecular Docking. Evid Based Complement Alternat Med. 2022;2022. https://doi.org/10.1155/2022/2566407
  2. Lazzara F, Conti F, Giuffrida E, Eandi CM, Drago F, Platania CBM, et al. Integrating network pharmacology: The next-generation approach in ocular drug discovery. Curr Opin Pharmacol. 2024;74:102425. https://doi.org/10.1016/j.coph.2023.102425
  3. Kim H-M, Ko D-G, Park SD. The initial for herbalomics; using "in silico" experiment. Herbal Formula Science. 2022;30(3):205-10. https://doi. org/10.14374/HFS.2022.30.3.205
  4. Park Y-B, Rhee CK, Yoon HK, Oh Y-M, Lim SY, Lee JH, et al. Revised (2018) COPD clinical practice guideline of the Korean Academy of Tuberculosis and Respiratory Disease: a summary. Tuberc Respir Dis. 2018;81(4):261. https://doi.org/10.4046/trd.2018. 0029
  5. Ha R, Kim D, Choi J, Jung-Choi K. A national pilot program for chronic diseases and health inequalities in South Korea. BMC public health. 2021;21(1): 1142. https://doi.org/10.1186/s12889-021-11208-7
  6. Kim I-A, Park Y-B, Yoo K-H. Pharmacotherapy for chronic obstructive pulmonary disease. J Korean Med Assoc. 2018;61:545-51. https://doi.org/
  7. Anthonisen NR, Connett JE, Kiley JP, Altose MD, Bailey WC, Buist AS, et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1: the Lung Health Study. JAMA. 1994;272(19):1497-505. https://dx.doi.org/10.5124/jkma.2018.61.9.545
  8. Nici L, Mammen MJ, Charbek E, Alexander PE, Au DH, Boyd CM, et al. Pharmacologic management of chronic obstructive pulmonary disease. An official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med. 2020;201(9):e56-e69. https://doi.org/10.1164/rccm.202003-0625ST
  9. Department of Pulmonary Internal Medicine UoKM. Oriental Medicine Pulmonary Internal Medicine. Seoul: Gukjin.
  10. Lee E-S, Han J-m, Kim M-H, Namgung U, Yeo Y, Park Y-C, et al. Effects of inhalable microparticles of on chronic obstructive pulmonary disease in a mouse model. J Korean Med. 2013;34(3):54-68. https://doi.org/doi.org/10.13048/jkm.13012
  11. Lee J-G, Yang S-Y, Kim M-H, NamGung U, Park Y-C. Protective effects of Socheongryongtang on elastase-induced lung injury. J Korean Med. 2011;32(4):83-99.
  12. Kim Y, Yang S-Y, Kim M-H, NamGung U, Park Y-C. Effects of Saengmaekcheongpye-eum on LPS-induced COPD model. J Int Korean Med. 2011;32(2):217-31.
  13. Han J-M, Yang W-K, Kim S-H, Park Y-C. Effects of Sagan-tang and individual herbs on COPD mice model. Herbal Formula Science. 2015;23(2):171-87. https://doi.org/10.14374/HFS.2015.23.2.171
  14. Park J-j, Yang W-k, Lyu YR, Kim S-h, Park YC. Inhibitory effects of SGX01 on lung injury of COPD mice model. J Int Korean Med. 2019;40(4):567-81. https://dx.doi.org/10.22246/jikm.2019.40.4.567
  15. Lee H, Kim Y, Kim HJ, Park S, Jang YP, Jung S, et al. Herbal formula, PM014, attenuates lung inflammation in a murine model of chronic obstructive pulmonary disease. Evid Based Complement Alternat Med. 2012;2012. https://doi.org/
  16. Kim TH, Yang WK, Lee SW, Kim SH, Lyu YR, Park YC, et al. Inhibitory Effects of GGX on Lung Injury of Chronic Obstructive Lung Disease (COPD) Mice Model. J Korean Med. 2021;42(3):56-71. https://doi.org/10.1155/2012/769830
  17. Heo J. Donguibogam - Various diseases: Hanbulhagyesa; 2014.
  18. Lee JW, Baek KM, Chang WS. Single-Dose Oral Toxicity Test of Woohwangchungshim-won in Mice. J Physiol & Pathol Korean Med. 2014;28(2):186-94. https://doi.org/10.15188/kjopp.2014.04.28.2.186
  19. Kwon D-Y, Oh M-S, Bu Y-m, Seo B-I, Choi H-Y. Herbology. Seoul: Younglimsa; 2004.
  20. Quan Y, Li L, Yin Z, Chen S, Yi J, Lang J, et al. Bulbus Fritillariae Cirrhosae as a respiratory medicine: is there a potential drug in the treatment of COVID-19? Front Pharmacol. 2022;12:784335. https://doi.org/10.3389/fphar.2021.784335
  21. Park M, Kang Y. Anti-oxidant and anti-inflammatory activities of various organ extracts from Trichosanthes kirilowii Maxim. Korean J Pharmacogn. 2016;47(4):327-32.
  22. Zhoh CK, Uhm TY, Kim JC. Antioxidantive effectiveness of Trichosanthes kirilowii Maximowicz extracts. Appl Chem Eng. 2007;18(6):625-9.
  23. Hikichi M, Mizumura K, Maruoka S, Gon Y. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. J Thorac Dis. 2019;11(Suppl 17):S2129. https://doi.org/10.21037/jtd.2019.10.43
  24. Yoo C-G. Pathogenesis and pathophysiology of COPD. Korean J Intern Med. 2009;77(4):383-400. https://doi.org/
  25. Chung K. Cytokines in chronic obstructive pulmonary disease. Eur Respir J. 2001;18(34 suppl):50s-9s.
  26. Bozinovski S, Vlahos R, Hansen M, Liu K, Anderson GP. Akt in the pathogenesis of COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(1):31-8. https://doi.org/10.2147/copd.2006.1.1.31
  27. Geraghty P, Wyman AE, Garcia-Arcos I, Dabo AJ, Gadhvi S, Foronjy R. STAT3 modulates cigarette smoke-induced inflammation and protease expression. Front Physiol. 2013;4:267. https://doi.org/10.3389/fphys.2013.00267
  28. Lebedeva ES, Kuzubova NN, Titova ON, Surkova EA. Effect of cyclooxygenase-2 inhibition on lung inflammation and hypoxia-inducible factor-1 signalling in COPD model. Eur Respiratory Soc. 2017. https://doi.org/10.1183/1393003.congress-2017.PA3926
  29. Vallath S, Hynds RE, Succony L, Janes SM, Giangreco A. Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. Eur Respir J. 2014;44(2):513-22. https://doi.org/10.1183/09031936.00146413
  30. Pandey KC, De S, Mishra PK. Role of proteases in chronic obstructive pulmonary disease. Front Pharmacol. 2017;8:276068. https://doi.org/10.3389/fphar.2017.00512
  31. Lomas DA. Does protease-antiprotease imbalance explain chronic obstructive pulmonary disease? Ann Am Thorac Soc. 2016;13(Supplement 2):S130-S7. https://doi.org/10.1513/AnnalsATS.201504-196KV
  32. Zhou X-M, Hou G, Gu D-X, Wang Q-Y, Zhao L. Peroxisome proliferator-activated receptor-γ in induced sputum is correlated with MMP-9/ TIMP-1 imbalance and formation of emphysema in COPD patients. J Thorac Dis. 2017;9(10):3703. https://doi.org/10.21037/jtd.2017.09.10
  33. Liu J, Liu M, Feng J, Zhu H, Wu J, Zhang H, et al. Alpha-ketoglutarate ameliorates abdominal aortic aneurysm via inhibiting PXDN/HOCL/ERK signaling pathways. J Transl Med. 2022;20(1):461. https://doi.org/10.1186/s12967-022-03659-2
  34. Morrison D, Rahman I, Lannan S, MacNEE W. Epithelial permeability, inflammation, and oxidant stress in the air spaces of smokers. Am J Respir Crit Care Med. 1999;159(2):473-9. https://doi.org/10.1164/ajrccm.159.2.9804080
  35. Reddy AT, Lakshmi SP, Banno A, Reddy RC. Role of GPx3 in PPARγ-induced protection against COPD-associated oxidative stress. Free Radic Biol Med. 2018;126:350-7. https://doi.org/10.1016/j.freeradbiomed.2018.08.014
  36. Li C, Liu Z, Xu Q, Peng H, Cao J, Zhou H, et al. PXDN reduces autophagic flux in insulin-resistant cardiomyocytes via modulating FoxO1. Cell Death Dis. 2021;12(5):418. https://doi.org/10.1038/s41419-021-03699-4
  37. Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 2006;7:1-10. https://doi.org/10.1186/1465-9921-7-53
  38. Jan R. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull. 2019;9(2):205. https://doi.org/10.15171/apb.2019.024
  39. Zeng H, Kong X, Peng H, Chen Y, Cai S, Luo H, et al. Apoptosis and Bcl-2 family proteins, taken to chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci. 2012;16(6):711-27.
  40. Zhou B-x, Li J, Liang X-l, Pan X-p, Hao Y-b, Xie P-f, et al. β-sitosterol ameliorates influenza A virus-induced proinflammatory response and acute lung injury in mice by disrupting the cross-talk between RIG-I and IFN/STAT signaling. Acta Pharmacol Sin. 2020;41(9):1178-96. https://doi.org/10.1038/s41401-020-0403-9
  41. Wang R, Zeng M, Zhang B, Zhang Q, Jia J, Cao B, et al. β-Sitosterol inhibits ovalbumin-induced asthma-related inflammation by regulating dendritic cells. Immunopharmacol Immunotoxicol. 2022;44(6):1013-21. https://doi.org/10.1080/08923973.2022.2102990
  42. Liu Y, Kong H, Cai H, Chen G, Chen H, Ruan W. Progression of the PI3K/Akt signaling pathway in chronic obstructive pulmonary disease. Front Pharmacol. 2023;14:1238782. https://doi.org/10.3389/fphar.2023.1238782