• 제목/요약/키워드: Phan-Thien-Tanner Model

검색결과 6건 처리시간 0.031초

Melt spinning dynamics of Phan-Thien Tanner fluids

  • Lee, Joo-Sung;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • 제12권2호
    • /
    • pp.119-124
    • /
    • 2000
  • Employing the Phan-Thien tanner (PTT) fluids model, dynamic behavior of the non-isothermal melt spinning has been investigated. Subjects such as draw resonance instability, the effects of spinline cooling and of the fluid viscoelasticity on the spinning dynamics have been studied using the governing equations of the system. In particular, the draw resonance criterion based on the traveling times of various kinematic waves in the spinline has been confirmed, the reason why the spinline cooling is stabilizing is analyzed, and the effect of fluid viscoelasticity on the spinline stability is summarized. It is believed that the same method as in this study can be applied with equal ease to other extension deformation processes like film casting and film blowing.

  • PDF

고무복합체의 모세관 압출에서 비선형 점탄성 모델의 적용 (Application to Non-linear Viscoelastic Model on Capillary Extrusion of Rubber Compounds)

  • 최성현;류민영;김학주;박동명;전재후
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.209-212
    • /
    • 2007
  • Rubber compounds have high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate. In this study, die swell of rubber compounds at the capillary die have been investigated through an experiment and computer simulation. They have been performed using fluidity tester in experiment and commercial CFD code, Polyflow in computer simulation. Die swell of rubber compounds for relaxation time at several modes under same conditions with the experiment were predicted using non-linear differential viscoelastic model, Phan-Thien-Tanner (PTT) model. The simulation was analyzed compared with the experiment. Viscoelastic behaviors for pressure, velocity and shear rate distribution were analyzed at the capillary die. It is concluded that the PTT model successfully represented the amount of the optimal die swell of rubber compounds for relaxation time at different modes.

  • PDF

고무복합체의 모세관 압출에서 비선형 점탄성 모델의 적용 (An Application of Non-linear Viscoelastic Model to Capillary Extrusion of Rubber Compounds)

  • 최성현;류민영
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.260-265
    • /
    • 2007
  • Rubber compounds have high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate. In this study, die swells of rubber compounds at the capillary die have been investigated through experiment and computer simulation. Experiments and simulations have been performed using fluidity tester and commercial CFD code, Polyflow respectively. Die swells of rubber compounds in a capillary die were predicted using non-linear differential viscoelastic model, Phan-Thien-Tanner(PTT) model for various relaxation times and relaxation modes. The results of simulation were compared with the experiments. Pressure and velocity distribution, and circulation flows at the comer of capillary die have been investigated through computer simulation. It is concluded that the PTT model successfully represented the amount of the die swell of rubber compounds for various relaxation times at different modes.

모세관 다이에서 고무 복합체의 점탄성 거동에 대한 컴퓨터 모사 (Computer Simulation of Viscoelastic Flow in a Capillary Die for Rubber Compounds)

  • 박동명;김학주;윤재룡;류민영
    • Elastomers and Composites
    • /
    • 제41권4호
    • /
    • pp.223-230
    • /
    • 2006
  • 고무복합체는 높은 점탄성 성질을 보이는데 압출성형 시 이 점탄성 성질 때문에 압출물이 팽창하게 된다. 그리고 팽윤양은 공정 조건에 따라서 변한다. 점탄성 성질에서 탄성 부분은 압출물의 팽창에 있어서 중요한 역할을 한다. 본 논문은 모세관 다이에서 여러 가지 고무복합체에 따른 다이팽윤을 알아보기 위해 상용 CFD 프로그램인 Polyflow를 사용하여 해석을 수행하였다. 컴퓨터 모사에서는 비선형 미분 점탄성 모델인 Phan-Thien-Tanner(PTT) 모델을 사용하였고 온도를 고러하여 해석하였다. 해석을 통해서 레저버와 모세관 다이에서 압출물의 압력, 속도, 그리고 온도 분포 등을 예측하였다. 여러 가지 고무 복합체의 다이 팽윤양을 알아보기 위해서 유량과 모세관 다이의 지름을 변경하면서 연구하였다. 본 연구를 통해서 PPT 모델은 고무 복합체에 대한 점탄성 거동을 잘 표현하고 있음을 확인할 수 있었다.

Stability analysis of a three-layer film casting process

  • Lee, Joo-Sung;Shin, Dong-Myeong;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • 제19권1호
    • /
    • pp.27-33
    • /
    • 2007
  • The co-extrusion of multi-layer films has been studied with the focus on its process stability. As in the single-layer film casting process, the productivity of the industrially important multi-layer film casting and the quality of thus produced films have often been hampered by various instabilities occurring in the process including draw resonance, a supercritical Hopfbifurcation instability, frequently encountered when the draw ratio is raised beyond a certain critical value. In this study, this draw resonance instability along with the neck-in of the film width has been investigated for a three-layer film casting using a varying width non-isothermal 1-D model of the system with Phan-Thien and Tanner (PTT) constitutive equation known for its robustness in portraying extensional deformation processes. The effects of various process conditions, e.g., the aspect ratio, the thickness ratio of the individual film layers, and cooling of the process, on the stability have been examined through the nonlinear stability analysis.