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Introduction

Phan-Thien Tanner model was derived from network theories of concentrated polymer
solutions and melts, and was first introduced by Phan-Thien and Tanner[1]. As the Phan-
Thien Tanner model is one of the nonlinear rheological models, it has been used to describe
the rheological properties of shear-thinning solutions such as PAA, PIB/C14, LDPE and so
on. Among them, the linear version of Phan-Thien Tanner model can be written like below.
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Tand D are the extra-stress tensor and the deformation-rate tensor, A is the relaxation

v
time and 7 is a constant viscosity. And 7 denotes the upper-convected derivative.
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Though shear parameter, £ is omitted in the linear version, (1) can tell the shear-thinning

behavior of polymer solutions with & only, where & is from Trouton viscosity data and

linked to the extensional experiments[1].
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Theory

To begin the numerical approach the flow of viscoelastic material in a sudden contraction
geometry, we should solve the simultaneous equations including the mass conservation,
momentum conservation and constitutive equation. By using the stabilizing techniques, we
could obtain more accurate solutions. DEVSS-G/DG methods play an important role of
stabilizing the system[2, 3]. With a fractional step method, it is possible to anaiyze the
unsteady motions of contraction flow{4]. The final forms of governing equations as a FEM

formulation are written as follows:
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where (A;B) denotes LABdQ on domain , n is a normal vector which has the

ext

outward direction at the boundary of finite elements. 7% takes the upstream additional

stress value in the regionof u-n<0.
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where ¥ ,@ and ¢ are linear basis function, Reynolds number and Weissenberg number

Lup
n

downstream width and # is the average velocity in a downstream. With above algorithms,

ui
are the dimensionless groups like as Re= , We =—— respectively. L is the

we can show the different phenomena in a complicated flow predicted by linear Phan-Thien

Tanner model and Oldroyd-B model. And S is assumed to be 1/9 in both cases.
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Results & Discussion

We obtained the steady solutions of high We flow with relative finer mesh which consists
of 2641 elements. The time increment was At=2X 10~ and the relative error for steady
criterion was order of ten to 6.

The differences of the numerical results predicted by another constitutive models are found
at a glimpse of vortex dynamics evidently. In Fig. 1, linear Phan-Thien Tanner model shows
the comner vortex enhancement mechanism. Contrary to those, the so-called lip vortex

enhancement mechanism is discovered in case of the Oldroyd-B mode! in Fig. 2.

We=1 We=3
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Fig. 1. Vortex dynamics of LPTT model (& = 0.25) in case of Re=10" (Ay =5x107").
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Fig. 2. Vortex dynamics of Oldroyd-B model in case of Re=10" (Ay = 5x107").
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Also the notable differences between two models can be observed in case of the stress

distributions near the contraction plane. The normalized first normal stress difference,

N(=7, -7 ) with 7, =3nu/L are shownin Fig. 3.
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Fig. 3. First normal stress difference along the downstream wall of

LPTT model (a) and Oldroy-B model (b).
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