• Title/Summary/Keyword: Petroleum pitch

Search Result 60, Processing Time 0.03 seconds

Preparation and Characterization of Pitch-based Carbon Paper for Low Energy and High Efficiency Surface Heating Elements (저전력 및 고효율 면상발열체를 위한 피치기반 탄소종이 제조 및 특성)

  • Yang, Jae-Yeon;Yoon, Dong-Ho;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.412-420
    • /
    • 2018
  • In this work, phenolic resins containing conductive carbon fillers, such as, petroleum coke, carbon black, and graphite, were used to improve the surface heating elements by impregnating a pitch-based carbon paper. The influence of conductive carbon fillers on physicochemical properties of the carbon paper was investigated through electrical resistance measurement and thermal analysis. As a result, the surface resistance and interfacial contact resistivity of the carbon paper were decreased linearly by impregnating the carbon fillers with phenol resins. The increase of carbon filler contents led to the improvement of electrical and thermal conductivity of the carbon paper. Also, the heating characteristics of the surface heating element were examined through the applied voltage of 1~5 V. With the applied voltage, it was confirmed that the surface heating element exhibited a maximum heating characteristic of about $125.01^{\circ}C$(5 V). These results were attributed to the formation of electrical networks by filled micropore between the carbon fibers, which led to the improvement of electrical and thermal properties of the carbon paper.

The Optimum Stabilization Conditions of TiO2-containing Pitch Fiber (TiO2 함유 피치섬유의 최적 안정화 조건)

  • Eom, Sang Yong;Lee, Chang Ho;Park, Kwan Ho;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.269-276
    • /
    • 2007
  • $TiO_2$-containing pitch fibers were prepared and various stabilization variables were investigated by characterizations of the fibers and behaviors of $TiO_2$ particles in the optimum stabilization conditions. When pitch fiber was stabilized by air at the optimum condition, the fiber weight increased as an increase of the stabilization temperature and a decrease of $TiO_2$ concentration. The carbonization yield was 71~82 wt.%, showing a decrease of the yield with the $TiO_2$ increase caused by the catalytic activity of $TiO_2$ to combustion. During the stabilization, newly developed carbonyl and carboxyl groups were introduced on the fiber surface and cross-linking reactions were progressed resulting the thermosetting property, which was verified by the replacement of hydrogen with oxygen. Pore size of the activated carbon fiber was increased by an increase in $TiO_2$ concentration. In the considerations of the aggregation behaviors of the $TiO_2$ particles, the optimum stabilization conditions of 0.5 wt.% $TiO_2$ containing petroleum-based pitch fiber were suggested as $280^{\circ}C$, 3 hr.

A Study on Co-carbonization Behavior of CoaI Tar and Petroleum Pitch (석유핏치와 석탄타르핏치의 공탄화 거동에 관한 연구)

  • Sim, Hwan-Bo;Lee, Baek-Hyeon;Hong, Seong-Wan;Lee, Bo-Seong
    • Korean Journal of Materials Research
    • /
    • v.6 no.2
    • /
    • pp.138-144
    • /
    • 1996
  • 탄소재료 결합모재의 전구체로 핏치류가 많이 이용된다. 본 연구에서는 탄화거동에서 차이를 보이고 있은 석유계와 석탄계 핏치의 첨가량을 10-70wt%까지 배합하여 400-50$0^{\circ}C$ 온도범위에서 열처리하는 동안에 나타나는 흐름거동, 용해도 정도 등을 관찰함으로서 모재로서의 가능성을 평가하였다. 질소분위기에서 열처리속도 2.5$^{\circ}C$/min로 43$0^{\circ}C$까지 승온하여 30분 동안 처리한 결과 석유계 핏치의 첨가량이 50%가 될 때 까지는 핏치의 유동성과 점결력을 좌우하는 것으로 알려질 $\beta$-resin의 양이 45wt%이상으로 나타났으며, 이렇게 혼합된 핏치는 탄화수율도 같은 조건으로 처리된 원료 핏치에 비해 73-100%까지 높은 값을 보임으로서 모재로서의 가능성이 있음을 보였다.

  • PDF

Preparation and Characterization of Spherical Carbon Composite for Use as Anode Material for Lithium Ion Batteries

  • Ahn, Byoung-Hoon;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1331-1335
    • /
    • 2010
  • A novel spherical carbon composite material, in which nanosized disordered carbons are dispersed in a soft carbon matrix, has been prepared and investigated for use as a potential anode material for lithium ion batteries. Disordered carbons were synthesized by ball milling natural graphite in air. The composite was prepared by mixing the ball-milled graphite with petroleum pitch powder, pelletizing the mixture, and pyrolyzing the pellets at $1200^{\circ}C$ in an argon flow. The ballmilled graphite consists of distorted nanocrystallites and amorphous phases. In the composite particle, nanosized flakes are uniformly distributed in a soft carbon matrix, as revealed by X-ray diffractometer (XRD) and transmission electron microscopy (TEM) experiments. The composite is compatible with a pure propylene carbonate (PC) electrolyte and shows high rate capability and excellent cycling performance. The electrochemical properties are comparable to those of hard carbon.

Synthesis and Applications of Spherical Active Carbon Materials (구형 활성탄소의 합성 및 응용)

  • Kim, Hongkyeong
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • Spherical active carbon materials have been used for the removal of pollutants in the area of food processing, water treatment, air purification, oral administration. Moreover, they are now expected to make an epoch in the areas of electronics, life science, environmental technology, and so on due to their superior physical properties. Carbon particles should be requested for the edgeless spherical shapes in order to minimize the loss due to the abrasion during the process and/or practical use, but the carbon particles manufactured from petroleum-based pitch do not meet these needs. Nowadays, thus, the spherical active carbon particles carbonized from various spherical polymer beads are studied with thermoplastic and/or thermosetting polymers. In this paper, the synthesis of spherical phenolic beads and furan beads, which are thermosetting polymers, and their carbonization techniques are examined.

  • PDF

Effect of Low Temperature Heat Treatment on the Physical and Chemical Properties of Carbon Anode Materials and the Performance of Secondary Batteries (저온 열처리가 탄소 음극재의 물리·화학적 특성 및 이차전지 성능에 미치는 영향)

  • Whang, Tae Kyung;Kim, Ji Hong;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 2021
  • In this study, effects of the physical and chemical properties of low temperature heated carbon on electrochemical behavior as a secondary battery anode material were investigated. A heat treatment at 600 ℃ was performed for coking of petroleum based pitch, and the manufactured coke was heat treated with different heat temperatures at 700~1,500 ℃ to prepare low temperature heated anode materials. The physical and chemical properties of carbon anode materials were studied through nitrogen adsorption and desorption, X-ray diffraction (XRD), Raman spectroscopy, elemental analysis. Also the anode properties of low temperature heated carbon were considered through electrochemical properties such as capacity, initial Coulomb efficiency (ICE), rate capability, and cycle performance. The crystal structure of low temperature (≤ 1500 ℃) heated carbon was improved by increasing the crystal size and true density, while the specific surface area decreased. Electrochemical properties of the anode material were changed with respect to the physical and chemical properties of low temperature heated carbon. The capacity and cycle performance were most affected by H/C atomic ratio. Also, the ICE was influenced by the specific surface area, whereas the rate performance was most affected by true density.

Effect of β-Resin of Petroleum-based Binder Pitch on Density of Carbon Block (석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향)

  • Kim, Kyung Hoon;Lee, Sangmin;An, Donghae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.432-436
    • /
    • 2017
  • Carbon blocks were prepared by compression molding process using the mixture of isotropic cokes and binder pitches, which were reformed with different ${\beta}$-resin contents from pyrolysis fuel oil. Physical and chemical properties and also thermal behavior of binder pitches were investigated through elemental analysis, FT-IR and thermogravimetric analysis, respectively. The adhesion of binder pitches to isotropic coke particles was evaluated from SEM images of the fracture surface of carbon blocks. From these results, it is shown that the adhesion between the cokes and binder was enhanced by increasing the ${\beta}$-resin content of binder pitches. The density of the carbon block after carbonization also increased from 1.325 to $1.383g/cm^3$ by increasing the ${\beta}$-resin content of binder pitches from 1.4 to 20.1%.

Preparation and Characterization of Mesophase Pitches from Petroleum Residues using Two-step Heat Treatment (석유계 잔사유로부터 저온 2단 열처리를 이용한 메조페이스 핏치 제조 및 특성)

  • JO, HANJOO;JUNG, MIN-JUNG;LEE, HYUNG-IK;LEE, YOUNG-SEAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.421-430
    • /
    • 2016
  • To prepare mesophase pitches through low energy process, pyrolysis fuel oil with $AlCl_3$ has been modified using two-step heat treatment which is heat-treated at $330^{\circ}C$ for 3~5 h after pre-treatment at $250^{\circ}C$. The result of polarized optical microscope observation, mesophase is not observed in pitches carried out only pre-heat treatment. While mesophase content is significantly increased from 9% to 100% according to increasing secondary heat treatment time from 3 h to 5 h. Synthesizing of the mesophase pitch at low temperature of $330^{\circ}C$ is attributed to decrease of viscosity of the pitches carried out first heat treatment with $AlCl_3$. The result of Fourier-transform infrared spectroscopic analysis, it is expected that aromatization of aliphatic compounds is dominant at early secondary heat treatment, on the other hand, polycondensation reaction becomes dominant as secondary heat treatment time increases. Aromaticity and stacking height of the pitches secondary heat treated for 5 hours are more increased about 25% and 107%, respectively, than that of pitches carried out only first heat treatment.

Yield enhancement of matrix precursor in short carbon fiber reinforced randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • v.19
    • /
    • pp.57-65
    • /
    • 2016
  • Isroaniso matrix precursor synthesized from commercially available petroleum pitch was stabilized in air. The influence of oxygen mass gain during stabilization on the yield of matrix precursor was studied. Additionally, the influence of pressure on the yield of the stabilized matrix precursor in a real system was studied. The fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA), yield, yield rate, and yield impact were used to check the effect of stabilization and pressure on the yield of the matrix precursor and the end properties of the composite thereafter. The results showed that the yield increased with stabilization duration up to 20 h whereas it decreased for stabilization duration beyond 20 h. Further results showed that the stabilized matrix precursor for a duration of 5 h could withstand almost two-fold greater hot-pressing pressure without resulting in exudation as compared to that of a 1 h stabilized matrix precursor. The enhanced hot-pressing pressure significantly improved the yield of the matrix precursor. As a consequence, the densification and mechanical properties were increased significantly. Further, the matrix precursor stabilized for a duration of 20 h or more failed to provide proper and uniform binding of the reinforcement.

Usage of Coal in the Paradigm Shift toward Sustainable Energy (지속가능 에너지 패러다임 변화속에서 석탄의 활용)

  • Park, Jay Hyun;Yang, In Jae;Lee, Jin Soo;Lee, Cheong Ryong
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.793-807
    • /
    • 2020
  • The policy for Green New Deal will promote the shift of the application to coal as feedstock from coal as fuel. Coal can be used as fuel for production of hydrogen and as feedstock materials such as synthetic graphite or activated carbon. Hydrogen is obtained from syngas produced through Steam carbon(SC), Water-Gas Shift(WGS), and Carbonation reactions, and these processes should be used in conjunction with CO2 sequestration technology. Anthracite has a potential in terms of cost advantage as a feedstock compared to a petroleum pitch, because Synthetic graphite is prepared by heat treating an anthracite with high rank to a graphitization temperature which is in the range of 2400~2800℃, in the presence of inorganic catalyst such as silicon or iron. From several studies, it has been confirmed that coal-based activated carbon(AC) is manufactured with quality similar to the large specific surface area and much micropore volume of lignin-based AC, can be prepared. Therefore it is expected that lignin-based AC is replaced to coal-based AC.