• Title/Summary/Keyword: Petroleum contamination

Search Result 123, Processing Time 0.028 seconds

Applicability of Resistivity/Capacitance Measurement on CPT Module for Investigation of Subsurface Contamination (지반 오염도 조사를 위한 전기비저항/정전용량 측정콘의 적용성 평가)

  • Oh, Myoung-Hak;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.45-54
    • /
    • 2006
  • Resistivity cone penetrometer test (RCPT) can be employed at a relatively low cost for in-situ delineation of subsurface contamination. While the resistivity measurement has a potential to investigate the subsurface contamination, resistivity measurements alone will lead to some degree of ambiguity in the results. In this study, capacitance measurement was incorporated into the RCPT to overcome the ambiguity inherent in electrical resistivity measurements. This study is focused on verifying the applicability of resistivity and capacitance measurements of CPT module to provide information on subsurface contaminated by heavy metal and petroleum hydrocarbon. Laboratory model tests were performed to evaluate the sensitivity of the measured resistivity and relative capacitance on the water content and different types of contaminants. Test results show that simultaneous measurement of electrical resistivity and capacitance can give more reliable information on subsurface contamination. Electrical measurements of the CPT module showed high applicability to be used in detecting saturated soils contaminated by heavy metal and diesel plume floating above the groundwater table.

A Study on the Effect of. Oil Leakage for Soil Contamination, Plants and Groundwater (오일의 누출이 토양오염, 식생 및 지하수에 주는 영향에 관한 연구)

  • 진성기;도덕현;최규홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.141-152
    • /
    • 1994
  • Our experiment investigated the degree of soil contaimination caused by oil leakage. Each soil sample was taken by boring 5, 8m below the test areas, located 5 to 30m from storage tanks at oil stations. According to the results from a series of laboratory tests(both soxhiet extract test and gas chromatograph test), Traces of a light oil were found in all samples except in Dj8, rocky soil and gasoline and petroleum were not detected. We concluded that soil contamination was caused by the corrosion of storage tanks or alternatively by oil overflow caused during the flooding of underground water seeping into the tank during heavy rain fall or the spillage caused by carelessness during lubrication. Old stations without a concrete box enclosing their metal tanks run a greater risk of oil leakage. To research the effect of oil leakage on plant growth and underground water, We examined the results of research conducted overseas. According to these results, when oil leakage occurs, plant growth is repressed and agricultural crops experience low productivity levels. Also, the contamination of underground water can be serious when oil spreads to the aquifer layer. As a result of these problems, to prevent oil leakage and minimize its contaminating effects at oil stations, it is necessary to improve facilities of storage tanks and have the monitoring system of oil leakage.

  • PDF

Quantification of Uncertainty Associated with Environmental Site Assessments and Its Reduction Approaches (부지 오염도 평가시 불확실성 정량화 및 저감방안)

  • Kim, Geonha;Back, JongHwan;Song, Yong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • Uncertainty associated with a sampling method is very high in evaluating the degree of site contamination; therefore, such uncertainty affects the reliability of precise investigation and remediation verification. In particular, in evaluating a site for a small-sized filling station, underground utilities, such as connection pipes and oil storage tanks, make grid-unit sampling impossible and the resulting increase in uncertainty is inevitable. Accordingly, this study quantified the uncertainty related to the evaluation of the degree of contamination by total petroleum hydrocarbon and by benzene, toluene, ethylene, and xylene. When planning a grid aimed at detecting a hot spot, major factors that influence the increase in uncertainty include grid interval and the size and shape of the hot spot. The current guideline for soil sampling prescribes that the grid interval increase in proportion to the area of the evaluated site, but this heightens the possibility that a hot spot will not be detected. In evaluating a site, therefore, it is crucial to estimate the size and shape of the hot spot in advance and to establish a sampling plan considering a diversity of scenarios.

Fluorescence Characteristic Spectra of Domestic Fuel Products through Laser Induced Fluorescence Detection

  • Wu, Ting-Nien;Chang, Shui-Ping;Tsai, Wen-Hsien;Lin, Cian-Yi
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.18-25
    • /
    • 2014
  • Traditional investigation procedures of soil and groundwater contamination are followed by soil gas sampling, soil sampling, groundwater sampling, establishment of monitoring wells, and groundwater monitoring. It often takes several weeks to obtain the analysis reports, and sometimes, it needs supplemental sampling and analysis to delineate the polluted area. Laser induced fluorescence (LIF) system is designed for the detection of free-phase petroleum pollutants, and it is suitable for on-site real-time site investigation when coupling with a direct push testing tool. Petroleum products always contain polycyclic aromatic hydrocarbon (PAH) compounds possessing fluorescence characteristics that make them detectable through LIF detection. In this study, LIF spectroscopy of 5 major fuel products was conducted to establish the databank of LIF fluorescence characteristic spectra, including gasoline, diesel, jet fuel, marine fuel and low-sulfur fuel. Multivariate statistical tools were also applied to distinguish LIF fluorescence characteristic spectra among the mixtures of selected fuel products. This study successfully demonstrated the feasibility of identifying fuel species based on LIF characteristic fluorescence spectra, also LIF seemed to be uncovered its powerful ability of tracing underground petroleum leakages.

A Study on the Biological Remediation Technology for Oil Contaminated Sites (유류로 오염된 토양의 생물학적 처리기법에 관한 연구)

  • Cho Jai-Rip
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.307-312
    • /
    • 2004
  • Contamination of industrial sites has happened by a variety compounds. Petroleum hydrocarbons, which are readily biodegradable, are reported principle contaminats in most industrial sites. Therefore, the use of biological processes will be a promising technology for remediation of industrial sites. This paper addresses the possible use of biological processes in remediation of contaminated industrial sites and discusses the background and main streams of the process. The paper also characterizes representative biological systems developed for application.

  • PDF

Environmental Remedial Investigation and plan for the soil and groundwater contaminated with petroleum (유류오염 토양/지하수 환경복원 조사${\cdot}$설계 사례)

  • Kim, Young-Woong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.57-74
    • /
    • 2001
  • The risk of the soil and groundwater that contaminated with petroleum is well known. The behaviour of petroleum in subsurface is governed by combined mechanism of several processes such as volatilization, adsorption, dissolution, biodegradation, etc. Large number of methods of remedial investigation and plan, therefore, have been developed and practiced. In application of the method, it is required engineer understands the mechanism of fate of petroleum in subsurface. So sampling procedures is very important for investigating the type of contaminants and their concentration as well as the selection of items that must be tested. For designing the remedial method, it is also required engineers to verify the structural formation of geology and the locational conditions of a land in detail, to familiar with the regulation, and to investigate the problems that can be happened after the performance was begun. In this paper it is shown that the investigation methods of contaminated land and the proper selection procedure of remedial method using the case history.

  • PDF

Comparison and Consideration on Foreign Guidances for Establishing Risk Assessment Method of Total Petroleum Hydrocarbons in Korea (국내 석유계총탄화수소 위해성평가 방법 마련을 위한 국외 지침 비교 및 고찰)

  • Yun, Sung-Mi;Noh, Hoe-Jung;Kim, Ji-In;Yoon, Jeong-Ki;Lim, Ga-Hee;Lee, Hong-gil;Jo, Hun-Je;Kim, In-Ja;Hwang, Ji-Ae;Kim, Hyun-Koo
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.54-72
    • /
    • 2018
  • This study reviewed standard operation procedures for fractionation and analytical methods of total petroleum hydrocarbons (TPH) in north america and european countries to aid proper establishment of risk assessment protocols associated with TPH exposure in Korea. In current, the TPH fraction methods established by Massachusetts Department of Environmental Protection (MassDEP) and Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) are most frequently employed worldwide. Both methods were developed on the basis of direct exposure of TPH from soil, although the method by TPHCWG also took into account the mobility of TPH. Volatile and extractable fractions of petroleum hydrocarbons were analyzed either separately or together. TPH fractionation methods were evaluated based on conservative toxicity values considering the uncertainty of risk assessment in light of current standard protocol for analyzing soil contaminants in Korea, and it was concluded that the method developed by MassDEP is more appropriate.

The Evaluation of Petroleum Contamination in Heterogeneous Media Using Partitioning Tracer Method (분배성 추적자 시험법을 이용한 불균질 지반의 유류 오염도 평가)

  • Kim, Eun-Hyup;Rhee, Sung-Su;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1372-1377
    • /
    • 2009
  • For the remediation of the subsurface contaminated by nonaqueous phase liquids(NAPLs), it is important to characterize the NAPL zone properly. Conventional characterization methods provide data at discrete points. To overcome the weak points of conventional characterization methods, the partitioning tracer method has been developed and studied. The average saturation of NAPL($S_n$), which is the representative and continuous saturation value within contaminated site, can be calculated by comparing the transport of the partitioning tracers to that of the conservative tracer in the partitioning tracer method. In this study, the application of the partitioning tracer method in heterogeneous media was investigated. To represent the heterogeneous condition of subsurface, a two-dimensional soil box was divided into four layers and each layer contained different sized soils. Soils in the soil box were contaminated by the mixture of kerosene and diesel, and partitioning tracer tests were conducted before and after the contamination using methanol as conservative tracer and 4-methyl-2-pentanol, 2-ethyl-1-butanol, and hexanol as partitioning tracers. The response curves of partitioning tracers from contaminated soils were separated and retarded in comparison with those from non-contaminated soils. The contamination of soils by NAPLs, therefore, can be detected by partitioning tracer method considering these retardations of tracers. From our experiment condition, the average saturation of NAPLs calculated by partitioning tracer method using the methanol as conservative tracer and hexanol as partitioning tracer showed the highest accuracy, though all results were underestimated. Further studies, therefore, were needed for improving the accuracy using the partitioning tracer test in heterogeneous media.

  • PDF

A Study on Remediation Methods of Contaminated Soils at Former Military Bases (군기지 오염토양의 정화 방법에 대한 연구)

  • Yang, Hyuksoo;Kim, Im Soon;Kang, Seon-Hong;Chang, Yoon Young;Park, Sehkyu;Ko, Jae Wook;Kim, Yunjung;Park, Chulhwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.647-651
    • /
    • 2014
  • Handling of the large quantity of oil, generation of heavy metals at the military blasting range and outworn facilities could cause the environmental accidents. Pollution levels of the former five U.S military bases located in Uijeongbu, Gyeonggi-do were measured. Soil contamination by TPH (Total Petroleum Hydrocarbons), BTEX (Benzene, Toluene, Ethylbenzene, Xylene), and heavy metals and groundwater contamination were detected. In order to purify contaminated soil, a variety of technologies including soil vapor extraction, slurping, landfarming and soil washing were applied. Contaminated soils of five target bases were purified and the results were suitable for the legal standards.