• Title/Summary/Keyword: Petrochemical industry

Search Result 144, Processing Time 0.028 seconds

Enhancing the Intrinsic Bioremediation of PAH-Contaminated Anoxic Estuarine Sediments with Biostimulating Agents

  • Bach Quang-Dung;Kim Sang-Jin;Choi Sung-Chan;Oh Young-Sook
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.319-324
    • /
    • 2005
  • Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 ${\mu}g/kg$ dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo [a] pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 ${\mu}g$ PAH/ kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.

Oil/Water Separation Technology by MXene Composite Membrane: A Review (MXene 복합막에 의한 기름/물 분리 기술: 총설)

  • Lee, Byunghee;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.304-314
    • /
    • 2021
  • Climate change results in unusual weather pattern and affects annual rain fall severely. At the same time, growing industrialization leads to higher energy demand and leakage from petrochemical industry and tanker leads to water pollution. In this scenario, finding out solution to generate clean water is highly essential. For oil/water separation, there are several methods available such as chemical precipitation and adsorption but membrane separation technique is considered to be a more cost and energy efficient process. Amphiphilicity nature of membrane are enhanced by making composite membrane with 2D material such as MXene, resulting in good electrical conductivity and hydrophilicity. This review is mainly classified into two sections: pure MXene and modified MXene. A variety of polymer is used to prepare composite membranes and MXene is modified to further enhance the properties suitable for particular applications.

A Development Inspection Management Operation Model of High Pressure Underground Pipeline in Industrial estate (산업단지 고압매설배관의 점검 관리 운영 모델 개발)

  • Choi, Ji-Hun;Kim, Jin-Jun;Rhie, Kwang-Won;Kim, Tae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2019
  • The high pressure underground pipelines of industrial states such as Ulsan, Yeosu consist with not only the pipelines for the utility support such as Raw material of petrochemical industry and steam, but also high pressure pipelines of toxic, flammable gas intricately like a web. Therefore, in this study, based on in-depth comparison analysis of industrial estate pipelines, and underground city gas pipelines' safety management status, excavation frequency, excavation depth, patrol period which are pipe damage impact factor by the other construction are analyzed. And, as a result, risk changes and correlations due to risk reduction strategy of the other construction are compared to be presented the safety inspection operation model for the high pressure underground pipelines of industrial estates.

Investigating the performance of polymer cement resistance in football stadium construction

  • Yangguang Zhang
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.203-213
    • /
    • 2023
  • New techniques, technologies, and materials should be used to design and build sports stadiums. Since this century, much progress has been made in covering the roofs of sports stadiums, and the possibility of accurate computer calculation has been provided for stadiums, so by choosing a new structure, we can double the beauty and resistance of these stadiums. A stadium has an excellent and valuable design when its structure, shell, building, materials, and joinery follow a high architectural idea at all levels and scales. This article examines the mechanical performance of polymer cement strength in the construction of football stadiums, along with their structural knowledge in the form of the best examples in the world. Portland cement is one of the most used materials for constructing football stadiums. However, its production requires spending a lot of money, wasting energy, and damaging the environment. Considering the disadvantages in the production and consumption of concrete in different environments, it is necessary to find alternative materials. It should be used with cheaper, simpler technology, abundant primary resources, energy saving, less environmental damage, and better chemical and physical properties in concrete. High-strength concrete technology is considered a new development in the construction industry of concrete structures. In hardened concrete, strength and durability are two main factors, and as the compressive strength of concrete increases, concrete becomes more brittle. As a result, its tensile strength does not increase in proportion to the increase in compressive strength and has less strain tolerance. For this reason, the need to use is evident from the fibers in high-strength concrete. Fibers are used in concrete to increase tensile strength, prevent crack propagation, and significantly increase softness. The increase with the change of these resistances depends on the strength of concrete without fibers, the shape of fibers, and the percentage of fibers. This cement is obtained from the wastes of chemical and petrochemical industries and the wastes from coal combustion, which have the properties mentioned as substitutes for Portland cement.

Polycyclic Aromatic Hydrocarbons in Industrial Organic Sludge from Wastewater Treatment Facilities in Korea (폐수처리시설에서 발생된 유기성 슬러지에 함유된 다환방향족탄화수소의 농도 특성)

  • Nam, Seong-Nam;Lee, Mi-Young;Yeon, Jinmo;Jeon, Taewan;Shin, Sun Kyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.574-582
    • /
    • 2012
  • This study presents the concentrations of the polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by United States Environmental Protection Agency (US EPA), in 98 sludges from 54 industrial wastewater treatment facilities of South Korea. The mean concentrations of ${\Sigma}_{16}PAHs$ were ranged from 32.5 ${\mu}g/kg-dw$ to 1189.3 ${\mu}g/kg-dw$ by industries, and the highest content was found in the petrochemical industry, followed by chemical, clothing manufacturing and dying, pulp and papermaking, secondary wastewater treatment, and food/beverage producing industries. Comparisons to the EU and Danish standards of ${\Sigma}_{16}PAHs$ in sewage sludge for land application showed only two samples (one from petrochemical, and the other from chemical industry) exceeded the limits. ANOVA test with PAH concentrations as variables revealed no statistically significant influences by industrial types and sampling time (i.e., seasonal variations). Pearson correlations between individual PAHs showed strong relationships (r>0.7) among 4-ring PAHs. Concentrations of acenaphthylene, anthracene, fluoranthene, benzo(a)anthracene, benzo(f)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene presented strong correlations to ${\Sigma}_{16}PAHs$. Principal component analysis discriminated entire samples into three groups by two principal components (PC1 and PC2) with 70% of data variations, in which industrial types were not of importance, but a dominance of certain PAHs. Samples in group-I, which is high PC1 and low PC2, were characterized by a dominance of 2-ring PAHs, and in group-II, PC1 and PC2 showed a linear relation, was dominant 4-ring PAHs. Group-III with low PC1 and high PC2 includes 17 samples showing a noticeably high contribution of 3-ring PAHs to ${\Sigma}_{16}PAHs$. This study provides concentrations of PAHs in industrial sludges collected from a wide variety of sources (six industrial types) and two seasons of sampling events, and the comparison of ${\Sigma}_{16}PAHs$ with other studies are also discussed.

Development of Machine Learning-Based Platform for Distillation Column (증류탑을 위한 머신러닝 기반 플랫폼 개발)

  • Oh, Kwang Cheol;Kwon, Hyukwon;Roh, Jiwon;Choi, Yeongryeol;Park, Hyundo;Cho, Hyungtae;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.565-572
    • /
    • 2020
  • This study developed a software platform using machine learning of artificial intelligence to optimize the distillation column system. The distillation column is representative and core process in the petrochemical industry. Process stabilization is difficult due to various operating conditions and continuous process characteristics, and differences in process efficiency occur depending on operator skill. The process control based on the theoretical simulation was used to overcome this problem, but it has a limitation which it can't apply to complex processes and real-time systems. This study aims to develop an empirical simulation model based on machine learning and to suggest an optimal process operation method. The development of empirical simulations involves collecting big data from the actual process, feature extraction through data mining, and representative algorithm for the chemical process. Finally, the platform for the distillation column was developed with verification through a developed model and field tests. Through the developed platform, it is possible to predict the operating parameters and provided optimal operating conditions to achieve efficient process control. This study is the basic study applying the artificial intelligence machine learning technique for the chemical process. After application on a wide variety of processes and it can be utilized to the cornerstone of the smart factory of the industry 4.0.

Investigation on Economical Feasibility for Energy Business of Waste Water Sludge Discharged in 'A' Industrial Complex (A-산업단지 발생 슬러지의 에너지화를 위한 경제성 검토)

  • Byun, Jung-Joo;Lee, Kang-Soo;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.61-74
    • /
    • 2012
  • Industrial complexes in Korea have been vigorously established by economic development plan and development policy of industry in 1960s. Recently, Korean government has promoted Eco Industrial Park (EIP) project to recycle by-products and wastes in industrial park In this study, we analyzed the physical and chemical properties for the sludges discharged from A industrial complex. And we investigated the economic feasibility and environmental impact of sludge to energy facilities. The analysis results indicated that the petrochemical industry were 92% in sludge production, the highest treatment amount was landfill, followed by incineration and recycling and then ocean disposal. Wastewater sludge and process sludge samples are collected and analyzed to use as basic data on economic feasibility and environmental impact. Weighted average heating value of sludge samples was 3,891kcal/kg. Based on this data, installation and operation costs, operation returns of operating the drying facility are estimated, compared with cogeneration facility. And this study examines how the payback period of each simulation(total 8 case) with the important parameter changes. As a result, it was found that what needs the shortest payback period is 3years with connection of drying facility and cogeneration facility based on the government's financial subsidy system.

Development Strategy of Seosan-Daesan Port using AHP Analysis (AHP를 이용한 서산 대산항의 발전전략에 관한 연구)

  • Yun, Kyong-Jun;Ahn, Seung-Bum;Lee, Hyang-sook
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.4
    • /
    • pp.39-52
    • /
    • 2018
  • The Seosan-Daesan Port is a representative trade port in Chungnam, and has the sixth largest total cargo throughput and the third largest oil cargo throughput in Korea. However, research on this port's development is lacking relative to that for Busan Port, Incheon Port, and Gwangyang Port, and no study exists that suggests the direction of the development strategy for Seosan-Daesan Port. This study discusses the future role of Seosan-Daesan Port in preparation for a rapidly changing future and the development strategy that should be established. Using the AHP, a development strategy is provided for Seosan-Daesan Port from short/mid-term and long-term viewpoints for three aspects: operation activation, infrastructure construction, and policy support. Operation activation is chosen as the most significant factor from a short/mid-term viewpoint, whereas infrastructure construction is recognized as important from a long-term viewpoint. Specifically, from a short/mid-term viewpoint, sustainable container cargo attraction, multipurpose dock construction, management pier construction, and opening of international passenger ferry lines are important factors while from the long-term viewpoint, hinterland construction, petrochemical industry cluster construction, automobile industry cluster construction, and management improvement system are important. Establishing action plans for each strategy and a cooperative network for sharing goals and strengthening cooperation is necessary.

A Study on the Comparison of Areas Near Gunsan according to the Revision of the National Air Pollutant Emissions (CAPSS) in 2020 (국가대기오염물질 배출량(CAPSS)의 2020년 산정 방법 개정에 따른 군산 인근지역 비교에 관한 연구)

  • Sang-Hun Park;Seong-Cheon Kim
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.190-200
    • /
    • 2023
  • Background: Gunsan has been constantly affected by pollutants generated by the Saemangeum development and the construction industry since the completion of the Saemangeum seawall on April 27, 2010. However, there are limitations to its study, such as taking into consideration weather conditions, geographical factors, and foreign inflows. Objectives: In this study, we compared the Existing-CAPSS emissions of Gunsan with Recalculated-CAPSS emissions data to analyze the differences in emissions characteristics by year (2016~2019). Methods: Using Existing data on CAPSS emissions (2016~2019) and Recalculated-CAPSS emissions (2016~2019) for Gunsan, which were Recalculated following the improvement of emissions calculations for 2020, we organized CO, NOX, SOX, PM10, VOCS, and NH3 emissions by substance and investigated the differences and characteristics of the Recalculated emissions by year. Results: For Re-CO and Re-PM10, the emission characteristics of CO were examined as energy industry combustion and PM10 emission characteristics were examined as ship cargo from non-road transportation sources, as ship leisure sources were excluded from non-road transportation source emissions. Conclusions: Comparing the emissions of Existing-CAPSS and Recalculated-CAPSS in Gunsan, the emissions of Recalculated-CAPSS by substance decreased by 39.76% for CO, 9.98% for PM10, 5.53% for VOCS, and 9.24% for NH3, while Re-NOX increased by 2.86% and Re-SOX increased by 1.97%. On the other hand, when comparing the emissions characteristics of Existing-CAPSS and Recalculated-CAPSS in Gunsan, Jeonju, and Iksan, the emission characteristics of Re-NOX, Re-SOX, Re-VOCS and Re-NH3 were similar to those of Ex-NOX, Ex-SOX, Ex-VOCS, and Ex-NH3. As such, Gunsan, Iksan, and Jeonju, showed differences in the comparison of different emission characteristics due to the geographical characteristics of the region (population, area, topography, weather factors) and the characteristics of the industrial complex (metal, petrochemical).

In Search of "Excess Competition" (과당경쟁(過當競爭)과 정부규제(政府規制))

  • Nam, II-chong;Kim, Jong-seok
    • KDI Journal of Economic Policy
    • /
    • v.13 no.4
    • /
    • pp.31-57
    • /
    • 1991
  • Korean firms of all sizes, from virtually every industry, have used and are using the term "excessive competition" to describe the state of their industry and to call for government interventions. Moreover, the Korean government has frequently responded to such calls in various ways favorable to the firms, such as controlling entry, curbing capacity investments, or allowing collusion. Despite such interventions' impact on the overall efficiency on the Korean economy as well as on the wealth distribution among diverse groups of economic agents, the term "excessive competition", the basis for the interventions, has so far escaped rigorous scrutiny. The objective of this paper is to clarify the notion of "excessive competition" and "over-investment" which usually accompanies "excessive competition", and to examine the circumstances under which they might occur. We first survey the cases where the terms are most widely used and proceed to examine those cases to determine if competition is indeed excessive, and if so, what causes "excessive competition". Our main concern deals with the case in which the firms must make investment decisions that involve large sunk costs while facing uncertain demand. In order to analyze this case, we developed a two period model of capacity precommitment and the ensuing competition. In the first period, oligopolistic firms make capacity investments that are irreversible. Demand is uncertain in period 1 and only the distribution is known. Thus, firms must make investment decisions under uncertainty. In the second period, demand is realized, and the firms compete with quantity under realized demand and capacity constraints. In the above setting, we find that there is "no over-investment," en ante, and there is "no excessive competition," ex post. As measured by the information available in period 1, expected return from investment of a firm is non-negative, overall industry capacity does not exceed the socially optimal level, and competition in the second period yields an outcome that gives each operating firm a non-negative second period profit. Thus, neither "excessive competition" nor "over-investment" is possible. This result will generally hold true if there is no externality and if the industry is not a natural monopoly. We also extend this result by examining a model in which the government is an active participant in the game with a well defined preference. Analysis of this model shows that over-investment arises if the government cannot credibly precommit itself to non-intervention when ex post idle capacity occurs, due to socio-political reasons. Firms invest in capacities that exceed socially optimal levels in this case because they correctly expect that the government will find it optimal for itself to intervene once over-investment and ensuing financial problems for the firms occur. Such planned over-investment and ensuing government intervention are the generic problems under the current system. These problems are expected to be repeated in many industries in years to come, causing a significant loss of welfare in the long run. As a remedy to this problem, we recommend a non-intervention policy by the government which creates and utilizes uncertainty. Based upon an argument which is essentially the same as that of Kreps and Wilson in the context of a chain-store game, we show that maintaining a consistent non-intervention policy will deter a planned over-investment by firms in the long run. We believe that the results obtained in this paper has a direct bearing on the public policies relating to many industries including the petrochemical industry that is currently in the center of heated debates.

  • PDF