• Title/Summary/Keyword: Petrochemical Company

Search Result 39, Processing Time 0.031 seconds

Safety Culture Assessment in Petrochemical Industry: A Comparative Study of Two Algerian Plants

  • Boughaba, Assia;Hassane, Chabane;Roukia, Ouddai
    • Safety and Health at Work
    • /
    • v.5 no.2
    • /
    • pp.60-65
    • /
    • 2014
  • Background: To elucidate the relationship between safety culture maturity and safety performance of a particular company. Methods: To identify the factors that contribute to a safety culture, a survey questionnaire was created based mainly on the studies of $Fern{\acute{a}}ndez-Mu{\tilde{n}}iz$ et al. The survey was randomly distributed to 1000 employees of two oil companies and realized a rate of valid answer of 51%. Minitab 16 software was used and diverse tests, including the descriptive statistical analysis, factor analysis, reliability analysis, mean analysis, and correlation, were used for the analysis of data. Ten factors were extracted using the analysis of factor to represent safety culture and safety performance. Results: The results of this study showed that the managers' commitment, training, incentives, communication, and employee involvement are the priority domains on which it is necessary to stress the effort of improvement, where they had all the descriptive average values lower than 3.0 at the level of Company B. Furthermore, the results also showed that the safety culture influences the safety performance of the company. Therefore, Company A with a good safety culture (the descriptive average values more than 4.0), is more successful than Company B in terms of accident rates. Conclusion: The comparison between the two petrochemical plants of the group Sonatrach confirms these results in which Company A, the managers of which are English and Norwegian, distinguishes itself by the maturity of their safety culture has significantly higher evaluations than the company B, who is constituted of Algerian staff, in terms of safety management practices and safety performance.

Evaluation of Respiratory Protection Program in Petrochemical Industries: Application of Analytic Hierarchy Process

  • Kolahi, Hadi;Jahangiri, Mehdi;Ghaem, Haleh;Rostamabadi, Akbar;Aghabeigi, Mandana;Farhadi, Payam;Kamalinia, Mojtaba
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.95-100
    • /
    • 2018
  • Background: Respiratory protection equipment (RPE) is the last resort to control exposure to workplace air pollutants. A comprehensive respiratory protection program (RPP) ensures that RPE is selected, used, and cared properly. Therefore, RPP must be well integrated into the occupational health and safety requirements. In this study, we evaluated the implementation of RPP in Iranian petrochemical industries to identify the required solutions to improve the current status of respiratory protection. Methods: This cross-sectional study was conducted among 24 petrochemical industries in Iran. The survey instrument was a checklist extracted from the Occupational Safety and Health Administration respiratory protection standard. An index, Respiratory Protection Program Index (RPPI), was developed and weighted by analytic hierarchy process to determine the compliance rate (CR) of provided respiratory protection measures with the RPP standard. Data analysis was performed using Excel 2010. Results: The most important element of RPP, according to experts, was respiratory hazard evaluation. The average value of RPPI in the petrochemical plants was $49{\pm}15%$. The highest and lowest of CR among RPP elements were RPE selection and medical evaluation, respectively. Conclusion: None of studied petrochemical industries implemented RPP completely. This can lead to employees' overexposure to hazardous workplace air contaminants. Increasing awareness of employees and employers through training is suggested by this study to improve such conditions.

Determinants of Green Practices in the Petrochemical Sector: An Empirical Study

  • Pun, Kit-Fai;Stanley M.J. Lau
    • International Journal of Quality Innovation
    • /
    • v.4 no.1
    • /
    • pp.175-190
    • /
    • 2003
  • This paper discusses the determinants of green practices and incorporates some empirical findings from a recent study in the petrochemical sector in the Republic of Trinidad and Tobago. The study was comprised of a survey and follow-up interviews with senior executives who participated in the survey. Of fourteen companies involved, the findings affirmed that the investigation of accidents, provision of an emergency response, employee training, decreasing the production of wastes, and pre-treating wastes before disposal should be stressed. Government requirement, the economic reasons and public pressures were the driving forces of green practices. The five most important determinants identified include performance evaluation, financial justification, impacts on company, management leadership and operations integration. Implementing environmental management systems as a feasible approach to green practices in the petrochemical sector was explored. The findings provide guidance that helps organisations to accommodate the determinants of green practices into achieving sustainable environmental goals.

A Kinetic Monte Carlo Simulation of Individual Site Type of Ethylene and α-Olefins Polymerization

  • Zarand, S.M. Ghafelebashi;Shahsavar, S.;Jozaghkar, M.R.
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.191-202
    • /
    • 2018
  • The aim of this work is to study Monte Carlo simulation of ethylene (co)polymerization over Ziegler-Natta catalyst as investigated by Chen et al. The results revealed that the Monte Carlo simulation was similar to sum square error (SSE) model to prediction of stage II and III of polymerization. In the case of activation stage (stage I) both model had slightly deviation from experimental results. The modeling results demonstrated that in homopolymerization, SSE was superior to predict polymerization rate in current stage while for copolymerization, Monte Carlo had preferable prediction. The Monte Carlo simulation approved the SSE results to determine role of each site in total polymerization rate and revealed that homopolymerization rate changed from site to site and order of center was different compared to copolymerization. The polymer yield was reduced by addition of hydrogen amount however there was no specific effect on uptake curve which was predicted by Monte Carlo simulation with good accuracy. In the case of copolymerization it was evolved that monomer chain length and monomer concentration influenced the rate of polymerization as rate of polymerization reduced from 1-hexene to 1-octene and increased when monomer concentration proliferate.

A Study on the Musculoskeletal Disorders in Petrochemical Industry (석유화학산업의 근골격계질환 실태에 관한 연구)

  • Park, Jung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.3
    • /
    • pp.77-86
    • /
    • 2006
  • After conducting an investigation of a specific workplace, 372 labor workers, who are employed at a certain domestic petrochemical company valve operating and maintenance processing section, were personally questioned about specific work-related ailments. According to the results, 57% of workers who were working in the petrochemical industry have suffered from pain-related musculoskeletal disorders in, at least, more than 1 body part. Specifically, there are more than 28% of workers suffering from pain in more than two body parts. Among the total work population, 18.8 % of workers are assumed to have a high probability of being diagnosed with musculoskeletal disorder. Also, according to the RULA checklist which evaluates environmental improvement conditions of the workplace, 76.7% of workplaces among the inspected areas have high hazardous work factors that are related to musculoskeletal disorder and needs to be improved upon and observed right away or in the foreseeable future. The prior factor has a high correlation and pain rate which is due to an improper work posture. Originally, this improper work posture is caused mostly by ergonomically incorrect facility design. Furthermore, the structure of the workplace does not consider the worker's individual build.

A Standard Method for Progress Measurement in a Petrochemical Plant EPC Project (석유화학 플랜트 EPC 사업의 진도율 산정표준의 제안)

  • Cho, Hong-Yeon;Yoo, Hoseon
    • Plant Journal
    • /
    • v.7 no.4
    • /
    • pp.77-87
    • /
    • 2011
  • In proportion to continuing growth of overseas plant market and the trend of its mega scale of the project, the importance of management is significantly emphasized for the successful execution of the project. And it is recognized that progress control is the most important management item amongst the others in the management. Progress control is importance of progress measurement for performance measurement and process control of project, but it is hardly obtainable securing the objectivity in the progress measurement since the progress measurement are being applied differently in accordance with the project conditions and the experience level of the person in charge for the progress control. This study has conducted as following to propose a standard method for progress measurement in a petrochemical plant protect. Domestic and overseas plant projects are investigated variously with the applied method of progress measurement, and the deduced problem of progress measurement. And then standard method for progress measurement of engineering, procurement, construction and commissioning has been proposed according to comparison and analysis of practices in domestic & overseas plant project, procedures for progress control in the globally reputed petrochemical client, company rules and recommendation of the expert in progress control.

  • PDF

Analysis Characteristic of Non-point source in Petrochemical (석유화학업종에서의 비산배출원 배출 특성 분석)

  • Chiwan, Ku;Seunghyo, An;Byungchol, Ma
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.45-51
    • /
    • 2022
  • Technologies for collecting and treating pollutants from point sources are steadily being developed, but Non-point sources, it is difficult to develop emission treatment technologies and effective emission coefficients. However, since non-point sources make up about 60% of domestic emissions, and first of all, the method of calculating emissions should be reasonable, and the workplace should develop emission reduction technologies based on this. This study suggest the effectiveness and improvement of the emission coefficient currently used for the petrochemical industry with high emissions. The emission characteristics of non-point sources emission were confirmed by analyzing the LDAR (Leak Detection And Repair) data of OO company located in Yeosu, Jeollanam-do over the past five years. As a result, there was no difference in discharge characteristics according to fluid phase, but it was confirmed that there was a difference in the size of the device and the characteristics of each manufacturer. In addition, it was confirmed that the emission coefficient applied in the petrochemical industry was larger than that of the refining industry, and improvement measures were suggested. Through these studies, it is expected that emission coefficients specialized in the petrochemical industry can be applied and that the workplace itself will contribute to the development of technologies that can drastically reduce them.

A Study on the Pollution of Nonylphenol in Surface Sediment in Gwangyang Bay and Yeosu Sound (광양만과 여수해만의 표층퇴적물에서 Nonylphenol의 오염에 관한 연구)

  • Jo, Hyeon Seo;Kim, Yong Ok;Seol, Sun U
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.561-570
    • /
    • 2004
  • This study was carried out to survey the pollution of nonylphenol (NP) in surface sediments around Gwangyang bay and Yeosu sound. NP was suspected chemicals as endocrine disruption. Gwangyang bay is located on the mid south coast of Korea. It is a semi-closed bay which Yeosu petrochemical industrial complex, POSCO (Pohang Steel Company) and Gwangyang container harbor are there. The surface sediments were collected at 15 stations with gravity corer at October, 1999, February, May and August, 2000. Also, the stream and intertidal sediment were collected at 5 sites at August, 2000. Concentrations of NP in surface sediments were in the range of 6.89 to 202.70 ng/g dry wt.. Seasonal range (mean value) of NP is 13.98 to 30.48 (23.46) ng/g dry wt. at October, 10.35 to 54.91 (28.10) ng/g dry wt. at February, 29.05 to 202.70 (82.32) ng/g dry wt. at May and 6.98 to 83.40 (25.37) ng/g dry wt. at August. NP was seasonally fluctuated, and the highest mean value and range was detected at May, 2000. NP was highly distributed in the inner part of Gwangyang bay than Yeosu sound. Concentrations of NP in stream and intertidal sediments showed the highest value in downstream near Yeosu petrochemical industrial complex and Yondung stream. It suggests that the source of NP is industrial wastewater and municipal sewage.