• 제목/요약/키워드: Pet Robot Control

검색결과 19건 처리시간 0.029초

네트워크를 통해 동작하는 애완 로봇 시뮬레이터 (Pet Robot Simulator Coordinated over Network)

  • 이성훈;이수영;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.530-537
    • /
    • 2009
  • A graphic simulator can be a useful tool for planning gaits or dynamic behaviors to a walking pet robot. Microsoft describes robotics developer studio (MSRDS) as an end-to-end robotics development platform including simulation engine based on dynamics. In this paper, we propose a pet robot simulator (PRS), based on MSRDS, which supports interactively controlled two walking robots connected over network. To be pet robot simulator, modeling a commercial pet robot is performed and gait planning is also implemented. By using concurrency and coordination runtime (CCR) and decentralized software services (DSS) of MSRDS software platform, we connect two robots which are displayed together but controlled separately over network. The two walking pet robots can be simulated interactively by joysticks. It seems to be an internet game for pet robots.

손 제스처 기반의 애완용 로봇 제어 (Hand gesture based a pet robot control)

  • 박세현;김태의;권경수
    • 한국산업정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.145-154
    • /
    • 2008
  • 본 논문에서는 애완용 로봇에 장착된 카메라로부터 획득된 연속 영상에서 사용자의 손 제스처를 인식하여 로봇을 제어하는 시스템을 제안한다. 제안된 시스템은 손 검출, 특징 추출, 제스처 인식 로봇 제어의 4단계로 구성된다. 먼저 카메라로부터 입력된 영상에서 HSI 색상공간에 정의된 피부색 모델과 연결성분 분석을 이용하여 손 영역을 검출한다. 다음은 연속 영상에서 손 영역의 모양과 움직임에 따른 특징을 추출한다. 이때 의미 있는 제스처의 구분을 위해 손의 모양을 고려한다. 그 후에 손의 움직임에 의해 양자화된 심볼들을 입력으로 하는 은닉 마르코프 모델을 이용하여 손 제스처는 인식된다. 마지막으로 인식된 제스처에 대응하는 명령에 따라 애완용 로봇이 동작하게 된다. 애완용 로봇을 제어하기 위한 명령으로 앉아, 일어서, 엎드려, 악수 등의 제스처를 정의하였다. 실험결과로 제안한 시스템을 이용하여 사용자가 제스처로 애완용 로봇을 제어 할 수 있음을 보였다.

  • PDF

Design of an Autonomous Eating Pet Robot

  • Park, Ch.S.;Choi, B.J.;Park, S.H.;Lee, Y.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.855-858
    • /
    • 2003
  • The trends of recent developed a pet robot which interacts with people are increased gradually. There are a few pet robots that are a robot dog, robot cat, and robot fish. The pet robot is featured that it is possible to sympathize and give pleasure to human. The pet robots express delight, sorrow, surprise, and hunger through the artificial intelligence. Previously, the pet robot has to exchange the battery when it is exhausted. Commercialized robots have a self-recharging function, which express hunger. Robot dog AIBO, SONY in Japan, checks the battery for expressing hunger. They find an energy station for recharge. While operation time of AIBO is 1 hour 30 minutes, recharging time is 2 hours. Recharging time is longer than operation time. During the recharge, they don't operate. We obtain a motivation for eating the battery when find the problem. In this paper, introduce an Autonomous Eating Pet Robot and propose a design for realization. The Autonomous Eating Pet Robot has a function that is the most basic instinct that is finding a food and evacuating.

  • PDF

센서 퓨전을 통한 인공지능 4족 보행 애완용 로봇 (An Intelligence Embedding Quadruped Pet Robot with Sensor Fusion)

  • 이래경;박수민;김형철;권용관;강석희;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.314-321
    • /
    • 2005
  • In this paper an intelligence embedding quadruped pet robot is described. It has 15 degrees of freedom and consists of various sensors such as CMOS image, voice recognition and sound localization, inclinometer, thermistor, real-time clock, tactile touch, PIR and IR to allows owners to interact with pet robot according to human's intention as well as the original features of pet animals. The architecture is flexible and adopts various embedded processors for handling sensors to provide modular structure. The pet robot is also used for additional purpose such like security, gaming visual tracking, and research platform. It is possible to generate various actions and behaviors and to download voice or music files to maintain a close relation of users. With cost-effective sensor, the pet robot is able to find its recharge station and recharge itself when its battery runs low. To facilitate programming of the robot, we support several development environments. Therefore, the developed system is a low-cost programmable entertainment robot platform.

자율섭취기능을 갖는 바퀴구동형 생체모방로봇 개발 (Development of a Biomimetic Wheeled Robot with Autonomous Eating Functionality)

  • 조익진;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.573-579
    • /
    • 2006
  • Most of the recently developed robots are human friendly robots which imitate an animal or human such as entertainment robot, biomimetic robot and humanoid robot. Interest in these robots is increased because the social trend is focused on health, welfare, and graying. By these social backgrounds, robots become more human friendly and suitable or home or personal environment. The more biomimetic robots resemble living creature, the more human feels familiarity. Human feels close friendship not only when feeding a pet, but also when watching a pet having the food. Most of entertainment robots and pet robots use internal-type batteries and have a self-recharging function. Entertainment robots and pet robots with internal-type batteries are not able to operate during charging the battery. So far there have been a few robots that do not depend on an internal battery. However, they need a bulky energy conversion unit and a slug or foods as an energy source, which is not suitable for home or personal application. In this paper, we introduce a new biomimetic entertainment robot with autonomous eating functionality, called EPRO-1(Eating Pet RObot version 1). The EPRO-1 is able to eat a food (a small battery), by itself and evacuate. We describe the design concept of the autonomous eating mechanism of the EPRO-1, characteristics of sub-parts of the manufactured mechanism and its control system.

HRI 엔터테인먼트 애완 로봇 (A Human-Robot Interaction Entertainment Pet Robot)

  • 이희진
    • 한국지능시스템학회논문지
    • /
    • 제24권2호
    • /
    • pp.179-185
    • /
    • 2014
  • 본 논문은 인간과 상호작용하는 엔터테인먼트 4족 애완 로봇과 스마트폰에서 로봇 조종이 가능한 로봇제어기 및 로봇에서 제공하는 센서 정보들을 이용하여 컴퓨터에서 가정용 기기들을 제어하는 홈스마트제어시스템을 구현하기 위한 것으로 로봇은 20 자유도를 가지면서 Microsoft사의 키넥트 센서, 적외선거리 센서, 3축 모션 센서, 그래픽 LCD, 온습도 및 가스 센서로 구성되어 있다. 로봇의 엔터테인먼트 기능을 구현하기 위하여 보행 알고리즘, 키넥트 센서를 이용한 모션 및 음성인식 알고리즘, 감정표현을 위한 알고리즘을 제시하였으며 로봇을 조종할 수 있는 스마트폰 로봇제어 알고리즘 및 가정용 기기를 제어하는 홈스마트제어 알고리즘을 제안하였다. 본 논문에서 제안한 알고리즘들은 구현한 로봇과 컴퓨터 및 스마트폰에 적용하여 실험으로 검증하였다.

Development of a Pet Robot Chasing a Moving Person in Outdoor Environment

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Aoshima, Nobuharu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.67-72
    • /
    • 2005
  • In a park or street, we can see many people jogging or walking with their dogs that are chasing their masters. In this study, a pet robot that imitates dog's behavior is developed. The task of robot is to chase a person who is recognized as the master. The physical structure and the sensor system are designed for the task and environment. A three-wheel type locomotion system is designed as the robot's physical structure which can follow a person who is jogging in outdoor environment like a park. A sensor system, which can detect relative position of the master to the robot in highly dynamic and hazardous worlds, is developed. This sensor system consists of a signal transmitter which is held by the master and ultrasonic sensor array which are mounted on the robot. The transmitter emits RF (radio frequency) and ultrasonic signals simultaneously. The ultrasonic sensor array detects the signals and calculates direction and distance between the robot and the transmitter. The developed RF-ultrasonic sensor is evaluated through experiments. A purely reactive behavior-based control architecture is used for the robot. The behavior control performance of the robot is assessed in outdoor and indoor tests.

치매노인에 대한 동물로봇 매개 중재 프로그램의 효과 (Effects of a Robot Pet-assisted Program for Elderly People with Dementia)

  • 송정희
    • 대한간호학회지
    • /
    • 제39권4호
    • /
    • pp.562-573
    • /
    • 2009
  • Purpose: The purpose of this study was to identify the effects on the cognitive function, Activities of Daily Living (ADL), mood, social behaviors, and problematic behaviors of robot pet-assisted program for elderly people with dementia. Methods: This study was a nonequivalent control group pretest-posttest design. The participants were 32 elders with dementia. Seventeen were assigned to the experimental group and 15 to the control group. The intervention was conducted twicea week for 6 weeks. Results: 1) After the program, cognitive function, ADL, and social behaviors did not show significant differences. 2) After the program, mood of experimental group was significantly better than that of the control group. 3) After the program, problematic behaviors of the experimental group were significantly more diminished than those of control group. 4) As a result of analyzing the response, robot pet-assisted program was effective such as inducing a positive emotional state and increasing communication and interaction. Conclusion: The robot pet-assisted program was effective in changing the mood and diminishing problematic behaviors and had positive effects such as increasing communication and interaction for elders with dementia. Therefore, this program should be considered as a positive program for physical and emotional support for elders with dementia.

Fundamental wheel Control for Artificial Life-robot

  • Kubik, Tomasz;Loukianov, Andrey A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.36.1-36
    • /
    • 2001
  • Recently the robot industry has developed quickly. There are robots carrying luggage at factories, the amusement robots (such as the pet-type robot) in the house, and so on. As the ability of computers improve, robot ability also improves, because mary calculations can be done in little time. Consequently robots can perform complex motions by various control methods. The robot in our laboratory was developed in order to assist various works in a hospital. We controlled our robot using PID control method. So this paper is written about PID control.

  • PDF

가상공간과 실공간의 동기화를 고려한 4족 애완 로봇 시뮬레이터 개발 (Synchronous Robot Simulator both on Virtual and Real Space for Quadruped Pet Robots)

  • 김홍석;이수영;최병욱
    • 조명전기설비학회논문지
    • /
    • 제24권6호
    • /
    • pp.75-82
    • /
    • 2010
  • 본 논문에서는 MSRDS 환경에서 가상 4족 애완 로봇과 실제 4족 애완 로봇을 동기화함으로써 애완용 로봇의 행동을 설계할 수 있는 새로운 응용 시뮬레이터를 개발하였다. 이를 통하여 실제 로봇의 걸음새 및 동작 개발에 필요한 시간비용을 줄이고, 지능형 서비스 애완 로봇의 상업화에도 도움이 될 것이다. 또한, 본 연구 결과를 이용하여 가상공간과 실공간의 모델링의 차이를 극복하는 연구에 이용할 수 있다. 본 논문의 결과로서 가상 로봇과 실제 로봇의 연동 제어를 통해 원격지에 있는 두 대의 로봇간의 원격제어가 가능하므로, 두 대의 애완 로봇을 이용한 네트워크 게임으로서도 활용할 수 있을 것으로 기대된다.