• Title/Summary/Keyword: Pet Hospital

Search Result 564, Processing Time 0.027 seconds

The evaluation of useful on the additional PET/CT Liver scan (PET/CT 검사에서 Gastrointestinal Cancer 환자의 Liver 추가촬영에 대한 유용성 평가)

  • Park, Se Youn;Lee, Hwa Jin;Lee, Mu Seok;Kim, Jung Uk;Ji, Hye In
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.46-48
    • /
    • 2016
  • Purpose The liver one of the most common site for distant metastasis for a variety of tumor, especially of gastrointestinal origin. the purpose of this study was to analyze image quality between standard scan and additional liver scan. Materials and Methods From September 2015 to February 2016. 152 patients were examined undergo gastrointestinal cancer. 32 patients confirmed liver metastasis analyzed same liver ROI level and check the SNR, SUV and T/N ratio Results The $SNR_{mean}$ of standard was $17.7{\pm}10.3$; addition was $22.3{\pm}9.7$ (p<0.05). In $SUV_{max}$ of standard was $6.7{\pm}2.8$; addition was $7.6{\pm}3.2$ (P<0.05). and the T/N ratio of standard was $2.1{\pm}0.6$; addition was $2.5{\pm}0.8$ (P<0.05). Conclusion The $SNR_{mean}$, $SUV_{max}$ and T/N ratio were higher than those on the first scan (P<0.05). The SNRmean showed the highest change rate among the parameters. A additional liver scan is more favorable for the detection of gastrointestinal cancer patients.

  • PDF

Comparative Evaluation of 18F-FDG Brain PET/CT AI Images Obtained Using Generative Adversarial Network (생성적 적대 신경망(Generative Adversarial Network)을 이용하여 획득한 18F-FDG Brain PET/CT 인공지능 영상의 비교평가)

  • Kim, Jong-Wan;Kim, Jung-Yul;Lim, Han-sang;Kim, Jae-sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.15-19
    • /
    • 2020
  • Purpose Generative Adversarial Network(GAN) is one of deep learning technologies. This is a way to create a real fake image after learning the real image. In this study, after acquiring artificial intelligence images through GAN, We were compared and evaluated with real scan time images. We want to see if these technologies are potentially useful. Materials and Methods 30 patients who underwent 18F-FDG Brain PET/CT scanning at Severance Hospital, were acquired in 15-minute List mode and reconstructed into 1,2,3,4,5 and 15minute images, respectively. 25 out of 30 patients were used as learning images for learning of GAN and 5 patients used as verification images for confirming the learning model. The program was implemented using the Python and Tensorflow frameworks. After learning using the Pix2Pix model of GAN technology, this learning model generated artificial intelligence images. The artificial intelligence image generated in this way were evaluated as Mean Square Error(MSE), Peak Signal to Noise Ratio(PSNR), and Structural Similarity Index(SSIM) with real scan time image. Results The trained model was evaluated with the verification image. As a result, The 15-minute image created by the 5-minute image rather than 1-minute after the start of the scan showed a smaller MSE, and the PSNR and SSIM increased. Conclusion Through this study, it was confirmed that AI imaging technology is applicable. In the future, if these artificial intelligence imaging technologies are applied to nuclear medicine imaging, it will be possible to acquire images even with a short scan time, which can be expected to reduce artifacts caused by patient movement and increase the efficiency of the scanning room.

Study on the Usefulness of respiration compensation PET/CT (호흡보정 PET/CT의 유용성에 관한 연구)

  • Kim, Ki-Jin;Bae, Seok-Hwan;Kim, Ga-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2209-2213
    • /
    • 2011
  • When taking PET/CT, the distortion of the image happens due to the movement of a lesion with respiration. In this study, the experiment was conducted to see if the change in SUV value and distortion of the image could be somewhat corrected by comparing the image which was not compensated with that of the region of lung nodule, compensated with respiration compensation Plumonary Toolkit possessed by this hospital. The records of 17 patients with Lung cancer between May and August 2008. As the result of the experiment, Max SUV value increased by from 4.08% minimum to 43.10% maximum, and the average Max SUV value of lung nodule increased from 6.07 to 7.00(12.16%). In the case of respiration compensation PET/CT, the distortion of the image improved. As there was no significance in the comparison of SCC and Adenocarcinom respectively, though there was a statistically significant level(P<0.05) before and after respiration compensation in SCC-Adenocarcinoma, there was an effect in respiration compensation regardless of Cell types. As the result of the experiment, it was found out that the distortion of standard intake coefficient value and the image was compensated Therefore, the diagnosis of lung cancer and follow up will be able to help.

Establishment of a [18F]-FDG-PET/MRI Imaging Protocol for Gastric Cancer PDX as a Preclinical Research Tool

  • Bae, Seong-Woo;Berlth, Felix;Jeong, Kyoung-Yun;Suh, Yun-Suhk;Kong, Seong-Ho;Lee, Hyuk-Joon;Kim, Woo Ho;Chung, June-Key;Yang, Han-Kwang
    • Journal of Gastric Cancer
    • /
    • v.20 no.1
    • /
    • pp.60-71
    • /
    • 2020
  • Purpose: The utility of 18-fluordesoxyglucose positron emission tomography ([18F]-FDG-PET) combined with computer tomography or magnetic resonance imaging (MRI) in gastric cancer remains controversial and a rationale for patient selection is desired. This study aims to establish a preclinical patient-derived xenograft (PDX) based [18F]-FDG-PET/MRI protocol for gastric cancer and compare different PDX models regarding tumor growth and FDG uptake. Materials and Methods: Female BALB/c nu/nu mice were implanted orthotopically and subcutaneously with gastric cancer PDX. [18F]-FDG-PET/MRI scanning protocol evaluation included different tumor sizes, FDG doses, scanning intervals, and organ-specific uptake. FDG avidity of similar PDX cases were compared between ortho- and heterotopic tumor implantation methods. Microscopic and immunohistochemical investigations were performed to confirm tumor growth and correlate the glycolysis markers glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) with FDG uptake. Results: Organ-specific uptake analysis showed specific FDG avidity of the tumor tissue. Standard scanning protocol was determined to include 150 μCi FDG injection dose and scanning after one hour. Comparison of heterotopic and orthotopic implanted mice revealed a long growth interval for orthotopic models with a high uptake in similar PDX tissues. The H-score of GLUT1 and HK2 expression in tumor cells correlated with the measured maximal standardized uptake value values (GLUT1: Pearson r=0.743, P=0.009; HK2: Pearson r=0.605, P=0.049). Conclusions: This preclinical gastric cancer PDX based [18F]-FDG-PET/MRI protocol reveals tumor specific FDG uptake and shows correlation to glucose metabolic proteins. Our findings provide a PET/MRI PDX model that can be applicable for translational gastric cancer research.

A pyrazolopyrimidine-based radioligand for imaging of the translocator protein

  • Kwon, Young-Do;Kim, Hee-Kwon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.69-72
    • /
    • 2016
  • Since the translocator protein (TSPO) is involved in neurodegeneration diseases, many scientists' interest has been focused on the development of a ligand targeting TSPO. A novel compound based on pyrazolo[1,5 -a] pyrimidine structure, DPA-714, has been studied and considered as a TSPO ligand with high affinity. In this highlight review, several researches for the novel radioligand for the translocator protein are illustrated.

Dosimetric Verification for Primary Focal Hypermetabolism of Nasopharyngeal Carcinoma Patients Treated with Dynamic Intensity-modulated Radiation Therapy

  • Xin, Yong;Wang, Jia-Yang;Li, Liang;Tang, Tian-You;Liu, Gui-Hong;Wang, Jian-She;Xu, Yu-Mei;Chen, Yong;Zhang, Long-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.985-989
    • /
    • 2012
  • Objective: To make sure the feasibility with $^{18F}FDG$ PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Methods: Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and $^{18F}FDG$ PET/CT). The dose distributions of the various regional were realized by SMART. Results: The absolute mean errors of interest area were $2.39%{\pm}0.66$ using 0.6cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Conclusions: Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.

Parametric Images of Standardized Uptake Values using P-18-FDG Attenuation Corrected Whole Body PET (F-18-FDG감쇠보정 전신 PET을 이용한 표준섭취계수 추정과 매개변수 영상의 구성)

  • Kim, Kyeong-Min;Kwark, Cheol-Eun;Lee, Dong-Soo;Jeong, Jae-Min;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Kim, Yong-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.560-569
    • /
    • 1996
  • Background and Purpose : Standardized uptake value(SUV) has been used as a quantitative index for differentiating benign and malignant tumors with F-18-FDG PET In this study, we produced whole body parametric images of SUV(WBPIS) by body weight normalization, and validated the values by comparison with SUV's calculated with regional scans. Subjects and Methods : Whole body scans were followed by regional scans sequentially on 23 patients. In whole body study, transmission and emission scans were acquired for 2 minutes and 6 minutes for each bed position, respectively. In regional study, transmission and emission scans were acquired for 20 minutes. Measured and segmented/ smoothed attenuation correction were applied using these 2 min transmission scans in whole body studies. The effects of attenuation correction on SUVs were evaluated quantitatively using F-18 filled cylindrical phantom. The mean and peak SUVs obtained from WBPIS were compared with SUVs of the regional scans. Results : In phantom studies, with any method of attenuation correction using regional or whole body studies of phantom, SUVs were nearly consistent. In whole body scan, SUV obtained using measured attenuation correction method was a little higher than SUV of regional scan. SUV obtained using segmented/smoothed attenuation correction method was a little lower. In patient studies, WBPIS using segmented/smoothed attenuation correction method was much smoother and more readable. SUVs of WBPIS obtained with both methods of attenuation correction were well correlated with SUVs of regional scans(r=0.9). SUVs of WBPIS with measured attenuation correction method were 5% lower than SUVs of regional scans. SUVs of WBPIS with segmented/smoothed attenuation correction method were 10% lower than SUVs of regional scans. The differences of SUVs of WBPIS by the two attenuation correction methods were relatively small compared with the possible differences derived from biological characteristics of tumors. Conclusion : We concluded that WBPIS could be useful in the quantification of tumor as well as in localization of whole body lesions, which were often outside the field of view in regional scan. WBPIS made using segmented/smoothed attenuation correction method could be used in clinical routines and SUVs from attenuation corrected F-18-FDG PET could be used interchangeably with SUVs of regional studies.

  • PDF

Evaluation of Perfusion and Image Quality Changes by Reconstruction Methods in 13N-Ammonia Myocardial Perfusion PET/CT (13N-암모니아 심근관류 PET/CT 검사 시 영상 재구성 방법에 따른 관류량 변화와 영상 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: The aim of this study was to evaluate changes of quantitative and semi-quantitative myocardial perfusion indices and image quality by image reconstruction methods in $^{13}N$-ammonia ($^{13}N-NH_3$) myocardial perfusion PET/CT. Materials and Methods: Data of 14 (8 men, 6 women) patients underwent rest and adenosine stress $^{13}N-NH_3$ PET/CT (Biograph TruePoint 40 with TrueV, Siemens) were collected. Listmode scans were acquired for 10 minutes by injecting 370MBq of $^{13}N-NH_3$. Dynamic and static reconstruction was performed by use of FBP, iterative2D (2D), iterative3D (3D) and iterative TrueX (TrueX) algorithm. Coronary flow reserve (CFR) of dynamic reconstruction data, extent(%) and total perfusion deficit (TPD) (%) measured in sum of 4-10 minutes scan were evaluated by comparing with 2D method which was recommended by vendor. The image quality of each reconstructed data was compared and evaluated by five nuclear medicine physicians through a blind test. Results: CFR were lower in TrueX 18.68% (P=0.0002), FBP 4.35% (P=0.1243) and higher in 3D 7.91% (P<0.0001). As semi-quantitative values, extent and TPD of stress were higher in 3D 3.07%p (P=0.001), 2.36%p (P=0.0002), FBP 1.93%p (P=0.4275), 1.57%p (P=0.4595), TrueX 5.43%p (P=0.0003), 3.93%p (P<0.0001). Extent and TPD of rest were lower in FBP 0.86%p (P=0.1953), 0.57%p (P=0.2053) and higher in 3D 3.21%p (P=0.0006), 2.57%p (P=0.0001) and TrueX 5.36%p (P<0.0001), 4.36%p (P<0.0001). Based on the results of the blind test for image resolution and noise from the snapshot, 3D obtained the highest score, followed by 2D, TrueX and FBP. Conclusion: We found that quantitative and semi-quantitative myocardial perfusion values could be under- or over-estimated according to the reconstruction algorithm in $^{13}N-NH_3$ PET/CT. Therefore, proper dynamic and static reconstruction method should be established to provide accurate myocardial perfusion value.

  • PDF

Synthesis of [18F]Fluorocholine Analogues as a Potential Imaging Agent for PET Studies

  • Yu, Kook-Hyun;Park, Jeong-Hoon;Yang, Seung-Dae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.506-510
    • /
    • 2004
  • There have been intensive studies concerning $[^{11}F]$choline ($[^{11}F]$methyldimethyl( ${\beta}$ -hydroxyethyl) ammonium) (1) which is known as a very effective tracer in imaging various human tumors localized in brain, lung, esophagus, rectum, prostate and urinary bladder using Positron Emission Tomography (PET) and there is increasing interest in $^{18}F$ labelled choline (2) and proved to be useful to visualize prostate cancer. We have prepared six $^{18}F$ labelled alkyl choline derivatives (3a-3c, 4a-4c) from ditosylated and dibrominated alkanes in moderate yields. The six alkyl tosylate or bromate ammonium salts have been synthesized as precursors. Radiofluorination was achieved by the treatment of precursors with $^{18}F$ - in the presence of Kryptofix-2.2.2.. The labeling yields varied ranging from 7 to 25%.

State of the Art of Imaging Equipment and Tools for Nuclear Cardiology (심장핵의학 검사를 위한 영상장비 및 도구의 최신동향)

  • Lee, Byeong-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.165-173
    • /
    • 2009
  • Nuclear cardiology in Korea is less active, compared to nuclear oncology, but it has been specialized and ramified. Lately, sophisticated nuclear cardiac imaging methods provide more convenience for patients. It is necessary to accurately estimate the recent progress in the imaging devices for nuclear cardiology. Myocardial perfusion imaging is a well established study to evaluate heart function. Myocardial perfusion SPECT and PET have been used for assessment of coronary artery disease with various radiopharmaceuticals. And of late, the development of advanced imaging devices - multi-pinhole technique and high definition imaging technique - and software made the scanning time shorter and expanded the application field. Therefore, it is required to review the nuclear cardiology hardware/software for the clinical practice and research. In this review, the characteristics about recently-developed SPECT/PET and software for nuclear cardiology are described. It is hoped that this information would contribute to improving the activity of nuclear cardiac research in Korea where the research for the fusion imaging combining a and nuclear imaging is drawing more attention.