• Title/Summary/Keyword: Perturbation analysis

Search Result 636, Processing Time 0.029 seconds

Derivation of formulas for perturbation analysis with modes of close eigenvalues

  • Liu, X.L.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.427-440
    • /
    • 2000
  • The formulas for the perturbation analysis with modes of close eigenvalues are derived in this paper. Emphasis is made on the consistency of the straightforward perturbation process, given the complete terms of perturbations in the zeroth-order, which is a form of Rayleigh quotient, and in the higher-orders. By dividing the perturbation of eigenvector into two parts, the first-order perturbation with respect to the modes of close eigenvalues is moved into the zeroth-order perturbation. The normality condition is employed to compute the higher-order perturbations of eigenvector. The algorithm can be condensed to a single mode with a distinct eigenvalue, and this can accelerate the convergence of the perturbation analysis. The example confirms that the perturbation approximation obtained from the suggested procedure is in a good accuracy on the eigenvalues, eigenvectors, and normality.

Comparison of Perturbation Analysis Estimate and Forward Difference Estimate in a Markov Renewal Process

  • Park, Heung-sik
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.871-884
    • /
    • 2000
  • Using simulation, we compare the perturbation analysis estimate and the forward difference estimate for the first and second derivatives of performance measures in a Markov renewal process. We find the perturbation analysis estimate has much les mean squared error than the traditional forward difference estimate.

  • PDF

Mass perturbation influence method for dynamic analysis of offshore structures

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.429-436
    • /
    • 2002
  • The current work presents an analysis algorithm for the modal analysis for the dynamic behaviors of offshore structures with concepts of mass perturbation influence term. The mass perturbation concept by using the term, presented in this paper offers an efficient solution procedure for dynamical response problems of offshore structures. The basis of the proposed method is the mass perturbation influence concepts associated with natural frequencies and mode shapes and mass properties of the given structure. The mathematical formulation of the mass perturbation influence method is described. New solution procedures for dynamics analysis are developed, followed by illustrative example problems, which deal with the effectiveness of the new solution procedures for the dynamic analysis of offshore structures. The solution procedures presented herein is compact and computationally simple.

Performance Analysis of Perturbation-based Privacy Preserving Techniques: An Experimental Perspective

  • Ritu Ratra;Preeti Gulia;Nasib Singh Gill
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.81-88
    • /
    • 2023
  • In the present scenario, enormous amounts of data are produced every second. These data also contain private information from sources including media platforms, the banking sector, finance, healthcare, and criminal histories. Data mining is a method for looking through and analyzing massive volumes of data to find usable information. Preserving personal data during data mining has become difficult, thus privacy-preserving data mining (PPDM) is used to do so. Data perturbation is one of the several tactics used by the PPDM data privacy protection mechanism. In Perturbation, datasets are perturbed in order to preserve personal information. Both data accuracy and data privacy are addressed by it. This paper will explore and compare several perturbation strategies that may be used to protect data privacy. For this experiment, two perturbation techniques based on random projection and principal component analysis were used. These techniques include Improved Random Projection Perturbation (IRPP) and Enhanced Principal Component Analysis based Technique (EPCAT). The Naive Bayes classification algorithm is used for data mining approaches. These methods are employed to assess the precision, run time, and accuracy of the experimental results. The best perturbation method in the Nave-Bayes classification is determined to be a random projection-based technique (IRPP) for both the cardiovascular and hypothyroid datasets.

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I - A*X-1A + B*X-1B

  • Lee, Hosoo
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.123-131
    • /
    • 2014
  • The purpose of this paper is to study the perturbation analysis of the matrix equation $X=I-A^*X^{-1}A+B^*X^{-1}B$. Based on the matrix differentiation, we give a precise perturbation bound for the positive definite solution. A numerical example is presented to illustrate the shrpness of the perturbation bound.

Acoustic Analysis with Moving Window in Normal and Pathologic Voices

  • Choi, Seong-Hee;Lee, Ji-Yeoun;Jiang, Jack J.
    • Phonetics and Speech Sciences
    • /
    • v.2 no.3
    • /
    • pp.165-170
    • /
    • 2010
  • In this study, the most stable portion was identified using 5% moving window during /a/ sustained phonation in normal and pathologic voice signals and the perturbation values were compared between normal and pathologic voices at the mid-point and at the most stable portion using moving window, respectively. The results revealed that some severe pathologic voice signals can be eligible for perturbation analysis by identifying the most stable portion with Err less than 10. In addition, the perturbation acoustic parameters did not differentiate the pathologic voice signals from the normal voice signals when the mid-point was selected to measure the perturbation analysis(p>0.05). However, significantly higher %shimmer and lower SNR values were observed in pathologic voices (p<0.05) when the most stable portion was selected by moving window. In conclusion, moving window could identify the most stable portion objectively which can allow toget the minimum perturbation values (%jitter, %shimmer) and maximum SNR values. Thus, moving window technique can be applicable for more reliable and accurate perturbation acoustic analysis.

  • PDF

Perturbation Based Stochastic Finite Element Analysis of the Structural Systems with Composite Sections under Earthquake Forces

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.129-144
    • /
    • 2008
  • This paper demonstrates an application of the perturbation based stochastic finite element method (SFEM) for predicting the performance of structural systems made of composite sections with random material properties. The composite member consists of materials in contact each of which can surround a finite number of inclusions. The perturbation based stochastic finite element analysis can provide probabilistic behavior of a structure, only the first two moments of random variables need to be known, and should therefore be suitable as an alternative to Monte Carlo simulation (MCS) for realizing structural analysis. A summary of stiffness matrix formulation of composite systems and perturbation based stochastic finite element dynamic analysis formulation of structural systems made of composite sections is given. Two numerical examples are presented to illustrate the method. During stochastic analysis, displacements and sectional forces of composite systems are obtained from perturbation and Monte Carlo methods by changing elastic modulus as random variable. The results imply that perturbation based SFEM method gives close results to MCS method and it can be used instead of MCS method, especially, if computational cost is taken into consideration.

Dynamic Analysis of Space Structure by Using Perturbation Method (섭동법을 이용한 우주 구조물의 동적 운동 해석)

  • Kwak, Moon-K.;Seong, Kwan-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.674-679
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of space structure floating in space. In dealing with the dynamics of space structure, the use of Lagrange's equations of motion in terms of quasi-coordinates were suggested to derive hybrid equations of motion for rigid-body translations and elastic vibrations. The perturbation method is then applied to the hybrid equations of motion along with discretization by means of admissible functions. This process is very tiresome. Recently, a new approach that applies the perturbation method to the Lagrange's equations directly was proposed and applied to the two-dimensional floating structure. In this paper, we propose the application of the perturbation method to the Lagrange's equations of motion in terms of quasi-coordinates. Theoretical derivations show the efficacy of the proposed method.

  • PDF

Dynamic Analysis of Space Structure by Using Perturbation Method (섭동법을 이용한 우주 구조물의 동적 운동 해석)

  • Seong, Kwan-Jae;Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1030-1036
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of space structure floating in space. In dealing with the dynamics of space structure, the use of Lagrange's equations of motion in terms of quasi-coordinates were suggested to derive hybrid equations of motion for rigid-body translations and elastic vibrations. The perturbation method is then applied to the hybrid equations of motion along with discretization by means of admissible functions. This process is very tiresome. Recently, a new approach that applies the perturbation method to the Lagrange's equations directly was proposed and applied to the two-dimensional floating structure. In this paper. we propose the application of the perturbation method to the Lagrange's equations of motion in terms of quasi-coordinates. Theoretical derivations show the efficacy of the proposed method.

Significance of Acoustic Parameter - RAP, PPQ, APQ- in Hoarseness (애성환자에서 음향지표인 RAP, PPQ 및 APQ의 유용성)

  • 안철민;이종혁;강현국;이용배
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.6 no.1
    • /
    • pp.22-26
    • /
    • 1995
  • Change of voice, espicially hoarseness show irregular vibration of vocal cord. So, computerized acoustic analysis has presented many acoustic parameters for objective evaluation of voice. We objectively investigated the vocal vibration of normal persons and hoarseness patients in Korea. The RAP(relative average perturbation), PPQ(pitch period perturbation quotient) and APQ(amplitude perturbation quotient) of normal persons were compared with that of hoarseness patients with multidimensional voice program for the possibility of distinguishing the pathologic vocal vibration from normal. Authors agree that RAP, PPQ and APQ showed interesting differences between the normal and the hoarseness patients by the multivariate statistical analysis. In conculusion, relative average perturbation, pitch period perturbation and amplitude perturbation quotient might be meangingful screening parameters distinguishing hoarseness patients from normal.

  • PDF