• Title/Summary/Keyword: Personalized autonomous driving

Search Result 8, Processing Time 0.02 seconds

A RLS-based Convergent Algorithm for Driving Characteristic Classification for Personalized Autonomous Driving (자율주행 개인화를 위한 순환 최소자승 기반 융합형 주행특성 구분 알고리즘)

  • Oh, Kwang-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.285-292
    • /
    • 2017
  • This paper describes a recursive least-squares based convergent algorithm for driving characteristic classification for personalized autonomous driving. Recently, various researches on autonomous driving technology have been conducted for level 4 fully autonomous driving. In order for commercialization of the autonomous vehicle, personalized autonomous driving is required to minimize passenger's insecureness to the autonomous vehicle. To address this problem. this study proposes mathematical model that represents driving characteristics and recursive least-squares based algorithm that can estimate the defined characteristics. The actual data of two drivers has been used to derive driving characteristics and the hypothesis testing method has been used to classify two drivers. It is shown that the proposed algorithms can derive driving characteristics and classify two drivers reasonably.

A Human-Centered Control Algorithm for Personalized Autonomous Driving based on Integration of Inverse Time-To-Collision and Time Headway (자율주행 개인화를 위한 역 충돌시간 및 차두시간 융합 기반 인간중심 제어 알고리즘 개발)

  • Oh, Kwang-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.249-255
    • /
    • 2018
  • This paper presents a human-centered control algorithm for personalized autonomous driving based on the integration of inverse time-to-collision and time headway. In order to minimize the sense of difference between driver and autonomous driving, the human-centered control technology is required. Driving characteristics in case that vehicle drives with the preceding vehicle have been analyzed and reflected to the longitudinal control algorithm. The driving characteristics such as acceleration, inverse time-to-collision, time headway have been analyzed for longitudinal control. The control algorithm proposed in this study has been constructed on Matlab/Simulink environment and the performance evaluation has been conducted by using actual driving data.

An Inference Similarity-based Federated Learning Framework for Enhancing Collaborative Perception in Autonomous Driving

  • Zilong Jin;Chi Zhang;Lejun Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1223-1237
    • /
    • 2024
  • Autonomous vehicles use onboard sensors to sense the surrounding environment. In complex autonomous driving scenarios, the detection and recognition capabilities are constrained, which may result in serious accidents. An efficient way to enhance the detection and recognition capabilities is establishing collaborations with the neighbor vehicles. However, the collaborations introduce additional challenges in terms of the data heterogeneity, communication cost, and data privacy. In this paper, a novel personalized federated learning framework is proposed for addressing the challenges and enabling efficient collaborations in autonomous driving environment. For obtaining a global model, vehicles perform local training and transmit logits to a central unit instead of the entire model, and thus the communication cost is minimized, and the data privacy is protected. Then, the inference similarity is derived for capturing the characteristics of data heterogeneity. The vehicles are divided into clusters based on the inference similarity and a weighted aggregation is performed within a cluster. Finally, the vehicles download the corresponding aggregated global model and train a personalized model which is personalized for the cluster that has similar data distribution, so that accuracy is not affected by heterogeneous data. Experimental results demonstrate significant advantages of our proposed method in improving the efficiency of collaborative perception and reducing communication cost.

Study on the Take-over Performance of Level 3 Autonomous Vehicles Based on Subjective Driving Tendency Questionnaires and Machine Learning Methods

  • Hyunsuk Kim;Woojin Kim;Jungsook Kim;Seung-Jun Lee;Daesub Yoon;Oh-Cheon Kwon;Cheong Hee Park
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.75-92
    • /
    • 2023
  • Level 3 autonomous vehicles require conditional autonomous driving in which autonomous and manual driving are alternately performed; whether the driver can resume manual driving within a limited time should be examined. This study investigates whether the demographics and subjective driving tendencies of drivers affect the take-over performance. We measured and analyzed the reengagement and stabilization time after a take-over request from the autonomous driving system to manual driving using a vehicle simulator that supports the driver's take-over mechanism. We discovered that the driver's reengagement and stabilization time correlated with the speeding and wild driving tendency as well as driving workload questionnaires. To verify the efficiency of subjective questionnaire information, we tested whether the driver with slow or fast reengagement and stabilization time can be detected based on machine learning techniques and obtained results. We expect to apply these results to training programs for autonomous vehicles' users and personalized human-vehicle interfaces for future autonomous vehicles.

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

Clustering-Based Federated Learning for Enhancing Data Privacy in Internet of Vehicles

  • Zilong Jin;Jin Wang;Lejun Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1462-1477
    • /
    • 2024
  • With the evolving complexity of connected vehicle features, the volume and diversity of data generated during driving continue to escalate. Enabling data sharing among interconnected vehicles holds promise for improving users' driving experiences and alleviating traffic congestion. Yet, the unintentional disclosure of users' private information through data sharing poses a risk, potentially compromising the interests of vehicle users and, in certain cases, endangering driving safety. Federated learning (FL) is a newly emerged distributed machine learning paradigm, which is expected to play a prominent role for privacy-preserving learning in autonomous vehicles. While FL holds significant potential to enhance the architecture of the Internet of Vehicles (IoV), the dynamic mobility of vehicles poses a considerable challenge to integrating FL with vehicular networks. In this paper, a novel clustered FL framework is proposed which is efficient for reducing communication and protecting data privacy. By assessing the similarity among feature vectors, vehicles are categorized into distinct clusters. An optimal vehicle is elected as the cluster head, which enhances the efficiency of personalized data processing and model training while reducing communication overhead. Simultaneously, the Local Differential Privacy (LDP) mechanism is incorporated during local training to safeguard vehicle privacy. The simulation results obtained from the 20newsgroups dataset and the MNIST dataset validate the effectiveness of the proposed scheme, indicating that the proposed scheme can ensure data privacy effectively while reducing communication overhead.

Tour-based Personalized Trip Analysis and Calibration Method for Activity-based Traffic Demand Modelling (활동기반 교통수요 모델링을 위한 투어기반 통행분석 및 보정방안)

  • Yegi Yoo;Heechan Kang;Seungmo Yoo;Taeho Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.32-48
    • /
    • 2023
  • Autonomous driving technology is shaping the future of personalized travel, encouraging personalized travel, and traffic impact could be influenced by individualized travel behavior during the transition of driving entity from human to machine. In order to evaluate traffic impact, it is necessary to estimate the total number of trips based on an understanding of individual travel characteristics. The Activity-based model(ABM), which allows for the reflection of individual travel characteristics, deals with all travel sequences of an individual. Understanding the relationship between travel and travel must be important for assessing traffic impact using ABM. However, the ABM has a limitation in the data hunger model. It is difficult to adjust in the actual demand forecasting. Therefore, we utilized a Tour-based model that can explain the relationship between travels based on household travel survey data instead. After that, vehicle registration and population data were used for correction. The result showed that, compared to the KTDB one, the traffic generation exhibited a 13% increase in total trips and approximately 9% reduction in working trips, valid within an acceptable margin of error. As a result, it can be used as a generation correction method based on Tour, which can reflect individual travel characteristics, prior to building an activity-based model to predict demand due to the introduction of autonomous vehicles in terms of road operation, which is the ultimate goal of this study.

A Study on the Current State of the Library's AI Service and the Service Provision Plan (도서관의 인공지능(AI) 서비스 현황 및 서비스 제공 방안에 관한 연구)

  • Kwak, Woojung;Noh, Younghee
    • Journal of Korean Library and Information Science Society
    • /
    • v.52 no.1
    • /
    • pp.155-178
    • /
    • 2021
  • In the era of the 4th industrial revolution, public libraries need a strategy for promoting intelligent library services in order to actively respond to changes in the external environment such as artificial intelligence. Therefore, in this study, based on the concept of artificial intelligence and analysis of domestic and foreign artificial intelligence related trends, policies, and cases, we proposed the future direction of introduction and development of artificial intelligence services in the library. Currently, the library operates a reference information service that automatically provides answers through the introduction of artificial intelligence technologies such as deep learning and natural language processing, and develops a big data-based AI book recommendation and automatic book inspection system to increase business utilization and provide customized services for users. Has been provided. In the field of companies and industries, regardless of domestic and overseas, we are developing and servicing technologies based on autonomous driving using artificial intelligence, personal customization, etc., and providing optimal results by self-learning information using deep learning. It is developed in the form of an equation. Accordingly, in the future, libraries will utilize artificial intelligence to recommend personalized books based on the user's usage records, recommend reading and culture programs, and introduce real-time delivery services through transport methods such as autonomous drones and cars in the case of book delivery service. Service development should be promoted.