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Abstract

Level 3 autonomous vehicles require conditional autonomous driving in which

autonomous and manual driving are alternately performed; whether the driver

can resume manual driving within a limited time should be examined. This

study investigates whether the demographics and subjective driving tendencies

of drivers affect the take-over performance. We measured and analyzed the

reengagement and stabilization time after a take-over request from the

autonomous driving system to manual driving using a vehicle simulator that

supports the driver’s take-over mechanism. We discovered that the driver’s
reengagement and stabilization time correlated with the speeding and wild

driving tendency as well as driving workload questionnaires. To verify the effi-

ciency of subjective questionnaire information, we tested whether the driver

with slow or fast reengagement and stabilization time can be detected based

on machine learning techniques and obtained results. We expect to apply these

results to training programs for autonomous vehicles’ users and personalized

human–vehicle interfaces for future autonomous vehicles.
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1 | INTRODUCTION

An autonomous vehicle can drive itself without the man-
ual operation of a human driver. The Society of Automo-
tive Engineers (SAE) J3016 [1] classifies autonomous
vehicle types from SAE Level 0 (no automation) to SAE
Level 5 (full vehicle autonomy), according to their degree
of autonomy. Figure 1 shows the level of automation of
autonomous vehicles [2].

The driver’s role depends on the level of autono-
mous driving. The driver’s role is emphasized at Level
3 and below; nevertheless, no driver intervention is
needed at Levels 4 and above. In a Level 3 autonomous
vehicle, driving is conditionally autonomous; the auton-
omous driving and manual driving modes exist alter-
nately. The autonomous driving system (ADS) drives in
the autonomous driving mode. However, in the manual
driving mode, the driver must operate the vehicle.
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Accordingly, a control authority transition for transfer-
ring the right to handle the vehicle occurs between the
ADS and human drivers in a Level 3 autonomous driv-
ing vehicle. When control is transferred from the driver
to the ADS, the control authority transition process is
performed stably; conversely, an accident could occur
when control is transferred from the ADS to the driver.
In the autonomous driving mode, the driver may be
occasionally immersed in nondriving-related tasks
(NDRTs) instead of concentrating on the driving
situation, exposing the driver to risks during the process
of a control authority transition that requires the
driver’s manual intervention. This could lead to acci-
dents. Thus, drivers operating Level 2 and 3 autonomous
vehicles must be “fallback-ready users” who can initiate
a manual operation at any time upon request by
the ADS.

In 2018, the driver of a Tesla vehicle operating in the
autopilot mode died in a crash while playing a
smartphone game. At that moment, the driver did not
have to drive the car because the ADS was driving the
car. Based on an investigation, the US National Transpor-
tation Safety Board (NTSB) announced lack of driver sta-
tus monitoring during autonomous driving as one of the
major causes of vehicular accidents. The NTSB presented
nine new safety recommendations to the National High-
way Traffic Safety Administration, including the follow-
ing two recommendations related to driver monitoring
systems [3].

• For vehicles equipped with Level 2 automation, SAE
international should develop performance standards
for driver monitoring systems to minimize driver dis-
engagement, prevent automation complacency, and
account for foreseeable misuse of automation.

• After developing the performance standards for driver
monitoring systems recommended in safety recom-
mendation H-20-X, all new passenger vehicles with
Level 2 automation should be equipped with a driver
monitoring system that meets these standards.

The driver’s ability to drive manually in Level 3
autonomous vehicles may deteriorate if the ADS drives
more often than the human driver. ISO/PDTR 21959 pro-
poses considering time- and quality-related performances
for control authority transition from an autonomous
vehicle system to a human driver [4]. When a request to
start manual driving is made, the driver can recognize
this and react reflexively, such as by raising his head to
look ahead or putting down an object in hand. Subse-
quently, the driver may put a hand on the steering wheel,
move the foot onto the accelerator, or operate a paddle-
shift to transition to manual driving. After a driver
switches from autonomous to manual driving, a certain
amount of time is required to attain a stable level of man-
ual driving, such as driving a Level 0 vehicle. The time-
related performance can be determined by measuring the
time at which the driver first responds to a take-over
request (TOR), time at which the driver must reengage in
manual driving, and the stabilization time associated
with manual driving. The quality-related performance
can be measured based on the distance to other vehicles,
standard deviation of the steering wheel angle, longitudi-
nal/lateral acceleration values, and brake frequency after
the driver starts manual driving.

Reducing the reaction time for TOR, a time-related
performance measure, is closely linked to reducing acci-
dents that occur when transferring control. Various pre-
vious studies have aimed to improve the time
performance. The provision of driving situation informa-
tion was studied by Kim and others [5], and Kim and
others [6] investigated a way of providing precue before
initiating TOR. Cunninghama and Regana [7] examined
the modality of an interactive device to provide a TOR,
whereas Kim and others [8] and Endsley [9] studied the
effects of driver readiness. The results of the previous
studies can be linked to functions that could be included
in designing an autonomous vehicle system capable of
quickly recognizing TOR information and reducing the
reaction time. Some studies [10,11] confirmed that time
performance was improved by reducing the TOR reaction
time through experience and learning. Female drivers
had a lower time performance rate than male drivers,
and middle-aged drivers had a lower time performance
rate than younger drivers. Nevertheless, even if the driver
is engaged in various NDRTs, including conversation,
drinking, and texting, repeated control transition leads to
a gradual improvement in performance. We infer that

F I GURE 1 Levels of autonomous vehicles. (Modified pictures

of KOTSA [2], after receiving written permision from author)
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education and training on using Level 3 vehicles are nec-
essary for the regular use of these vehicles.

There has been no research on predicting control
transfer performance by collecting driver characteristic
information in advance and knowing whether educa-
tion or training is required. Hence, research is required
to analyze how driver characteristics affect control
authority transition performance. This study aims to
determine whether the driver’s subjective information
collected through the prequestionnaire, such as demo-
graphic characteristics, driving workload weight infor-
mation, speed driving, and wild driving tendencies,
affects control authority transition performance. More-
over, the following research questions are presented to
verify the efficiency of subjective tendency and check
whether it could distinguish between a slow and high
control performance driver before using a Level 3
vehicle.

• Research Question 1. Does the driver’s subjective ten-
dency affect the reengagement time of manual driving?
Can the driver’s prequestionnaires be used to classify
fast and slow transition drivers?

• Research Question 2. Does the driver’s subjective ten-
dency affect the manual driving stabilization time?
Can fast and slow manual driving stabilization time
drivers be classified using the drivers’
prequestionnaires?

The remainder of the paper is organized as follows.
Section 2 examines the related studies on the human fac-
tor characteristics of autonomous vehicles. Section 3
describes the experimental environment for control tran-
sition using the vehicle simulator, subjective driving ten-
dency questionnaire contents, experimental procedure,
and transition time measurement method. Section 4
describes the statistical analysis results on the informa-
tion collected by the control authority transition experi-
ment. Section 5 explains the method and results of
classifying drivers who respond quickly or slowly to the
control authority transition based on the subjective driv-
ing questionnaires. Finally, Section 6 presents the conclu-
sion and future work.

2 | RELATED STUDIES

Previous research regarding the human factor character-
istics associated with autonomous driving includes
driver’s inattention and distraction, situational awareness
(SA), excessive trust and belief in autonomous vehicles,
and poor manual driving skills [12]. The driver,
immersed in NDRTs instead of driving, could be

inattentive and distracted when the ADS is driving. Thus,
when a request to switch to manual operation occurs, the
response time increases, thereby deteriorating driving
performance [13].

SA is the consciousness of events that occur in the
surrounding environment as spatiotemporal environmen-
tal factors; it understands the environmental factors and
predicts the near-future driving environment [14,15]. If
the driver is distracted or inattentive during autonomous
driving, the SA level deteriorates because the driver is not
focusing on maintaining awareness related to vehicle and
road conditions [16]. A dangerous situation can occur if
the system warning is unexpectedly generated when the
SA level is reduced [17,18]. Kim and others [5] stated
that the overall control authority transition performance
improved when the driving situation information was
provided to the terminal installed in the vehicle com-
pared with when the driving situation information was
not provided. Even if the driver performs a secondary
task (NDRT), the driver can recognize this if the informa-
tion, such as the remaining time and distance until a
TOR, is represented through the agent terminal mounted
on the vehicle. The SA information helps to prepare for
the transfer of control authority in advance.

Kim and others [19] stated that the drivers performed
an NDRT with high visual and high auditory workloads.
An image was displayed on the vehicle terminal to
increase the visual workload, and the experimenter was
guided to find and click other parts. To increase the audi-
tory workload, an n-back test was conducted by continu-
ously calling a number. A response was achieved by
adding the previous number to the heard number.
According to the NDRT performed by the driver during
autonomous driving, the driver’s visual, auditory, cogni-
tive, and psychomotor workload may vary, and the
results affect the control transition performance. Precues,
such as the “beep” sound, which induces attention in
advance, increase the relevant baseline activity before the
stimulus occurs. An increase in basal activity improves
the performance and efficiency of subsequent tasks [20].
Additionally, precue induces early perceptual processing,
which gets the person cognitively ready [21]. A precue
causes attention shift, which increases the processing effi-
ciency. Thus, providing a precue before TOR may reduce
response time. Kim and others [6] demonstrated that the
three types of precues were provided 4 s before TOR.
Visual channel precue was provided using repeated dis-
play while monophonic and repeated sounds represented
auditory channel. It was suggested that the control right
transition performance was better in providing auditory
monophonic or repetition than visual. Cunninghama and
Regana [7] investigated how to employ the modality of
the interaction device that provides TOR to reduce the
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reengagement time of manual driving. TOR information
was provided by combining two or three modalities
among visual, auditory, and tactile information. The
results suggest that control transition response perfor-
mance significantly improved when TOR notification
was provided by adding tactile modality. Driver readiness
should be considered a human factor that affects control
transfer performance. Driver readiness is a driver’s state
indicating whether the driver can manually operate the
vehicle by regaining control when control is transferred
from the autonomous to manual driving mode [4]. When
the driver was nonoverloaded or immersed in NDRT, the
driver’s readiness decreased and manual driving could be
dangerous. Kim and others [22] stated that a system
design method for measuring driver readiness was pro-
posed. Some studies [8,9] measured the questionnaire-
based subjective driving readiness. They demonstrated
that driver’s readiness negatively correlated with
reengagement time but positively correlated with the
vehicle control quality. Kim and others [23] presented a
study on the correlation between the subjectively felt
workload and control transition response time.

Previous studies investigated how the control right
transition performance can be improved through various
methods, such as observing driving readiness, providing
SA and precue information before TOR, and providing
TOR using the multimodal approach. However, no study
predicts control transition performance using driver’s
subjective tendency information obtained from
prequestionnaires. This study predicts whether the
driver’s control transition and manual driving stabiliza-
tion performances are fast or slow using the driver’s
demographics, speed driving and wild driving tendency,
and driving workload weight information. These

predictions could be used for providing education to first-
time drivers regarding Level 3 autonomous vehicles.

3 | EXPERIMENTS

3.1 | Configuration of the experimental
environment

We conducted experiments using a stationary vehicle
simulator built on the Hyundai Click vehicle model with
driver-controlled motion capabilities (Figure 2). We built
a vehicle simulator to obtain a 135� horizontal field of
view (FOV) using three monitors (43 inches each) to sim-
ulate driving on a real road. Each monitor displayed the
left lane, front road, and right-side view. The side- and
rear-view mirrors were mounted for rear road scenes
with horizontal and vertical 20� and 25� FOVs, respec-
tively. The experimental road screen was an eight-lane
two-way (four lanes in each direction) highway environ-
ment. The test vehicle where the driver was boarded was
placed on the third lane (out of the four lanes). It
maintained a traffic density of approximately 20 vehicles
in a 1-km section, including the front, left (second lane),
and right lanes (fourth lane).

The vehicle simulator was wired or wirelessly con-
nected to a motion sensor, image sensor, eye tracker, and
monitoring system that visually synchronizes and collects
the information for the reaction of the experimental
driver. The vehicle, environment, and driver behavior
information collected in the experiment are presented in
Table 1. The collected information is transmitted and
saved to the data acquisition server. The temperature and
humidity of the laboratory remained constant [5,7–9,23].

F I GURE 2 Experimental environment [5,7–9,23]
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3.2 | Preliminary questionnaire
information

Some emotions always accompany human behavior
manifested through intense mental/physiological
changes. Aggression is one of the innate traits in drivers;
it is unpredictable during the driving phase and often
occurs characteristically [24].

A driver’s aggressive road behavior could lead to dan-
gerous situations, such as breaking the speed limit, not
maintaining a safe distance from the vehicle in front, or
making a sudden lane change. The more aggressive
drivers are, the more careful they should be to avoid acci-
dents. Driver’s aggressiveness information is a subjective
characteristic. It is difficult to quantify; thus, it is not easy
to know the driving tendency information completely. In
the traffic psychology field, drivers’ driving manners are
judged through a questionnaire related to driving behav-
ior. Although a driver’s unique behavior could be evalu-
ated, it depends on the questionnaire filled, which could
be subjective.

Based on the study conducted by Reason and others
[25,26], the driver behavior questionnaire (DBQ) was
modified according to the circumstances of each coun-
try. In Netherlands, there have been studies using
DBQs to develop driver behavior models for accident
causes [27].

In a study conducted in Korea, risk driving behavior
factors were categorized into speeding, inexperienced
coping, wild/rough driving, drunk driving, and distrac-
tion. A questionnaire was used to measure these five fac-
tors, and research results that could identify aggressive
drivers with high accident rates in advance were publi-
shed [28]. The results showed the highest positive

correlation between speeding and wild driving among
the five factors. In a recent study of a traditional vehicle
that requires human drivers, high-risk and low-risk
groups were classified using the K-means cluster analysis
method based on the risky driving behavior question-
naire measurement information on the driver’s psycho-
logical characteristics and attitudes [29].

In a Level 3 vehicle, the ADS and human driver take
turns for driving the vehicle; therefore, reducing the risk
of traffic accidents caused by the human driver should be
considered. Hence, there is a need for a method to iden-
tify drivers who need training in advance so that when a
human driver uses a Level 3 vehicle, the reaction time for
TOR and manual driving stabilization time can be short-
ened. It is necessary to determine the relationship
between the driver’s subjective tendency and the perfor-
mance of the control authority transition through the
questionnaire. In this study, a questionnaire was admin-
istered focusing on driver’s demographics, speed driving,
and wild driving tendency information. As switching
from autonomous driving to manual driving increases
the driver’s driving workload, weight information on fac-
tors determining driving workload using NASA-TLX was
included in the questionnaire. Table 2 presents the ques-
tionnaire items used.

3.3 | Experimental procedure

Herein, the experiments were conducted with the
approval of the Korean Public Institutional Bioethics
Committee (http://public.irb.or.kr/, approval number
P01-202009-13-001). We used a simulator that provides a
voice command, such as “Drive manually” after �3 min

TAB L E 1 Acquisition data

Items Measurement method Device

Motions A Kinect device for motion detection is installed in front of the vehicle
simulator, and the driver’s motion is measured

Kinect

Video Attach a camera to the top frame of the vehicle simulator and capture
the simulation front screen video from the driver’s viewpoint

Camera 1

From the start to the end of the experiment, sit in the simulator vehicle
and take pictures of the driver performing the experiment

Camera 2

Driver’s frontal image captured by Kinect equipment installed in front
of the vehicle simulator

Kinect

Eye tracking Install eye trackers on the left and right corners of the dashboard of the
vehicle simulator and measure the driver’s gaze information

Eye tracker

Vehicle information Speed, RPM, distance to the vehicle ahead, lane information, and
vehicle position in the lane

Vehicle simulator

Driving environment information Vehicle location, surrounding vehicle information (front, rear, and side) Vehicle simulator
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of autonomous driving. At this time, the driver must
manually operate the steering wheel, brake, or accelera-
tor to start manual driving. When manual driving starts,
the operation mode information is displayed as “manual
mode” on the display screen mounted on the right termi-
nal in Figures 2 and 3. When the experimental driver
arrives at the laboratory, they are informed about the
purpose and precautions of the experiment and given a
consent form that needs to filled for their participation in
the experiment. Only those who sign the agreement can
participate in the experiment. Drivers fill out a question-
naire, as shown in Table 2, in advance, including
demographic information (gender, age, and driving expe-
rience), speed and wild driving tendencies, and driving
workload information. After completing the preliminary
questionnaire, the experiment operator explains the
autonomous and manual driving guidelines as well as
guides the drivers to become familiar with the simulated

driving and control-switching method. Upon completing
the practice, the autonomous driving experiment is con-
ducted after confirming that there is no dizziness or
motion sickness due to the use of a simulator. Autono-
mous driving begins when the experiment starts; there-
fore, drivers were instructed to perform NDRTs with
their smartphones to retrieve information or text. After
�3 min of autonomous driving, the ADS will request a
control switch with the instruction “Please drive manu-
ally.” The driver starts manual driving and operates the
simulator vehicle. When the driver gets used to driving,
the display says “it is stable” to the operator. Then, the
driver continues manual driving. When the manual oper-
ation time exceeds �2 min and 30 s, the operator tells
the driver “I will end the experiment” and stops the
simulator operation. After the experiment, the driver
fills out a postquestionnaire regarding their experiment
experience.

TAB L E 2 Description of questionnaire features

Feature group Detailed features Questionnaires Score

Demographic
information

Age Age Young/middle

Gender Gender Man/woman

D_Exp Driving experience Years of experience

Speed driving
tendency

Pleasure The more I speed it up, the more pleasure I get. 1–7

Stress When I drive at high speed, I relieve my stress. 1–7

Impatience I tend to drive hastily. 1–7

S_Compliance Obeying the speed limit will impede the flow of traffic. 1–7

Flexibility Driving below the speed limit on the highway is not flexible. 1–7

Accident I have heard from people around me that I tend to drive as if an
accident will happen.

1–7

Q_Start I get ahead of other cars when I start after the signal changes. 1–7

S_Increase Driving speed on Korean roads should be higher than it is now. 1–7

Wild driving
tendency

Y_Operation When I drive, I do not yield my lane well. 1–7

Concession I lack concessions when driving. 1–7

A_Interrupt I get angry with the driver who cuts in next to me. 1–7

Irritability I get angry when I get caught at a stop sign while driving. 1–7

Slow_Angry When I see the driver of a slow-moving car, I get angry. 1–7

A_Stop When I drive, I make a sudden start or a sudden stop. 1–7

Rest area I think it’s a waste of time to stop by a rest stop when I’m tired. 1–7

No_Concessions I do not yield when another vehicle cuts in. 1–7

Driving workload
weight [30]

Mental burden I have a mental burden when driving. 0–5

Physical burden I have a physical burden when driving. 0–5

Time burden I feel a time burden when driving. 0–5

Achievement I want to be able to drive and perform well. 0–5

Effort I try to drive well. 0–5

Frustration I feel frustrated because of irritability or anxiety when driving. 0–5
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3.4 | Measurement of control authority
transition time

We measure a driver’s control authority transition per-
formance in two ways: the reengagement and stabiliza-
tion time. As the experiment starts in the autonomous
driving state, the driver can freely perform NDRT, such
as web search or text message using their smartphone.
When the TOR “Please drive manually” occurs, the
driver hears the TOR and responds reflexively, such as
raising his eyes and looking around. Then, the driver
puts their hand on the steering wheel or manually
operates the brake or accelerator to regain control of
driving from automatic driving to manual driving. We
measured the time for the driver to start manual driving
after TOR and denoted it as the reengagement time.
After the driver starts manual driving, the driver says
“stable” when they get used to the driving operation.
We measured the time until the driver says “stable”
after starting manual driving and denoted it as stabiliza-
tion time. Figure 3 shows the concept of the control
authority transition time.

4 | STATISTICAL ANALYSIS

4.1 | Data preprocessing

The experiment involved 120 people; however, three peo-
ple’s data could not be used for statistical analysis due to
errors. For example, one participant unexpectedly del-
ayed the operation of the vehicle simulator due to their
lack of experience in operating the vehicle simulator, one
participant could not achieve stable manual operation,
and one participant made an error in the input value.
Table 3 shows a summary of the data of 117 people
without errors. The average reengagement time for

manual operation was 4.84 s, and the average manual
operation stabilization time was 13.27 s. We conducted
outlier processing on these data, removing values beyond
three times the standard deviation. The final 114 data
values were used for analysis. Finally, the drivers’
age groups comprised 56 young drivers in their 20s and
30s and 58 middle-aged drivers in their 40s and 50s.
Based on gender, there were 70 male and 44 female
participants.

4.2 | Statistical analysis in reengagement
time

To safely use a Level 3 autonomous vehicle, whether
the driver can initiate manual driving within a limited
time must be examined. For example, in Germany’s
Federal Highway Research Institute study [31], the
manual driving reengagement time was proposed to be
4 s. Research on an appropriate threshold for manual
driving reengagement time after TOR should be
conducted continually; driver characteristics may vary
between countries. In this study, based on the
reengagement time average in Table 3, we classified the
driver who quickly regained control within the thresh-
old (fast class) and those who exceeded the threshold
(slow class). Additionally, we analyzed each group. We
denote the drivers who performed manual driving
reengagement quickly as Fastreeng and those who per-
formed slowly as Slowreeng.

According to the statistical analysis results obtained
per class based on the reengagement time presented in
Table 4, 39.3% and 60.7% of the female drivers were in
the Slowreeng and Fastreeng classes, respectively. For male
drivers, the Slowreeng and Fastreeng classes accounted for
44.8% and 55.2%, respectively. A higher percentage of
male drivers exhibited slower control transitions than

F I GURE 3 Concept of control authority transition time
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female drivers. In case of young drivers, the Fastreeng
class percentage was 66.1% and the Slowreeng class rate
was 33.9%, indicating that younger drivers physically pro-
ceed with manual driving reengagement faster. In
middle-aged drivers, the Slowreeng and Fastreeng class per-
centages were identical.

The statistical analysis results in Table 4 showed
that the reengagement time in manual driving differs
among drivers. To determine whether groups deter-
mined to be slow and fast based on their reengagement
times have the same average value in the questionnaires
specified in Table 2, we established the following null
and alternative hypotheses and conducted an indepen-
dent sample t-test.

• Null hypothesis: The average value obtained through
questionnaires for the drivers exhibiting slow
reengagement is equal to that of the drivers exhibiting
fast reengagement.

• Alternative hypothesis: The average value obtained
through the questionnaires for the drivers exhibiting
slow reengagement is different from that of the drivers
exhibiting fast reengagement.

Table 5 presents the features in the questionnaires
with p-values below a significance level of 0.1 after con-
ducting an independent sample t-test. The average value
obtained based on the speeding tendency questionnaire
information of the Fastreeng class was larger than that of
the Slowreeng class. Based on the speed driving tendency
questionnaire information presented in Table 5, the
average values of Pleasure, Stress, Impatience, Accident,
Q_Start, and S_Increase questionnaire scores in the Fas-
treeng class were significantly higher than those in the

Slowreeng class (p < 0.05). These observations confirmed
that the speed driving tendencies of drivers who
achieved manual driving reengagement quickly were
“the higher the speed, the greater the enjoyment,” “the
higher the speed, the less the stress,” and “they drive
impatiently.” We also observed from the independent
sample t-test results that such drivers tend to hear from
people around them about the likelihood of an accident.
Further, they tend to either outrun other cars when
they start to drive after the signal changes or believe
that the road speed should be higher than the existing
speed limit. There was no significant difference in the
S_Compliance and flexibility questionnaire items
(p > 0.05).

In the wild driving tendency questionnaire informa-
tion, the questionnaire value of the fast class drivers was
significantly higher than that of the slow class drivers in
irritability (p < 0.05) and Slow_Angry items (p < 0.1).
These results showed that the drivers in the Fastreeng
class tend to get angry when they are caught at a stop
sign while driving or when they see the driver of a
slow-moving car. There was no significant difference in
the Y_Operation, Concession, A_Interrupt, A_Stop, Rest
area, and No_Concessions questionnaire items. Although
the p-value is not significant, the shorter the
reengagement time, the larger the questionnaire value in
the following items: “I do not yield my lane well while
driving,” “I get annoyed when I meet a stop sign while
driving,” “I get angry when I see a slow-moving car,” “I
make a sudden start or stop,” and “I do not yield when
another vehicle cuts in.”

In the driving workload-weighted questionnaire
information, the average questionnaire value of the
drivers with the fastest reengagement time was

TAB L E 4 Statistical analysis based on reengagement time

Class Count

Gender Age

Exp.Woman Man Young Middle

Slowreeng 48 22 (39.3%) 26 (44.8%) 19 (33.9%) 29 (50%) 16.1

Fastreeng 66 34 (60.7%) 32 (55.2%) 37 (66.1%) 29 (50%) 13.7

Sum 114 56 (100%) 58 (100%) 56 (100%) 58 (100%) -

Abbreviation: Exp., average driving experience (years).

TAB L E 3 Statistical analysis result of control authority transition time

Performance N Mean Min Max SD Q1 Q2 Q3

Reengagement 117 4.84 1.89 11.46 1.51 3.75 4.74 5.70

Stabilization 117 13.37 2.28 107.06 13.46 6.51 9.66 12.81

Abbreviations: Q, quantile; SD, standard deviation.
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significantly larger in the mental burden (p < 0.1) and
time burden (p < 0.05) questionnaires. Although the
independent sample t-test result was not significant, the
time to reengage in manual driving was observed to be
faster in drivers who tend to have a physical burden
while driving, who try to drive well, and who felt frus-
trated due to irritability or anxiety while driving.

4.3 | Statistical analysis in stabilization
time

By setting the average stabilization time as threshold,
as shown in Table 3, we classified drivers into two
groups: Faststab and Slowstab. We also analyzed the
characteristics of human factors in each group. The
statistical analysis results in Table 6 showed that 35.7%
and 64.3% of female drivers were in the Slowstab and
Faststab classes, respectively. For male drivers, the
Slowstab and Faststab classes accounted for 17.3% and
82.8%, respectively. Hence, the male drivers stabilized
faster after they started to drive manually, as compared
with female drivers. For young drivers, the Faststab and
Slowstab class percentage rates were 80.4% and 19.6%,
respectively. Among the middle-aged drivers, the

percentage of the Faststab class and Slowstab class was
67.2% and 32.8%, respectively. It means that younger
drivers could get used to the vehicle operation physi-
cally faster after starting manual driving than middle-
aged drivers. Therefore, they can drive the vehicle more
reliably in operations such as lane keeping and vehicle
speed control.

Similar to the statistical analysis for the two groups of
drivers divided by their reengagement time, we con-
ducted an independent sample t-test for the average
equality of each questionnaire item in two groups of
drivers based on the stabilization time. Table 7 presents
the features in the questionnaires with p-values below
the significance level of 0.1.

Manual driving stabilization refers to a condition
where the vehicle can be driven more stably, such as lane
keeping, distance from the vehicle in front, and vehicle
speed control. In the speed driving tendency question-
naire information presented in Table 7, the average
values of “Stress,” “S_Compliance,” “Flexibility,” and
“S_Increase” questionnaire scores of the drivers in
Slowstab were significantly higher than those of the Fas-
tstab drivers (p < 0.1). Drivers who prefer speeding were
analyzed as Slowstab, as they take longer to stabilize.
Slowstab drivers have a strong tendency to think that

TAB L E 6 Statistical analysis based on stabilization time

Class Count

Gender Age

Exp.Woman Man Young Middle

Slowstab 30 20 (35.7%) 10 (17.3%) 11 (19.6%) 19 (32.8%) 17.1

Faststab 84 36 (64.3%) 48 (82.8%) 45 (80.4%) 39 (67.2%) 13.9

Sum 114 56 (100%) 58 (100%) 56 (100%) 58 (100%) -

Abbreviation: Exp., average driving experience (years).

TAB L E 5 Independent sample t-test results for the questionnaire in the groups divided by reengagement time

Feature group Detailed features Average in Fastreeng Average in Slowreeng p-value (two-sided)

Speed driving tendency Pleasure 4.67 3.98 0.017*

Stress 4.24 3.65 0.045*

Impatience 3.59 3.00 0.050*

Accident 2.44 1.90 0.025*

Q_Start 3.21 2.54 0.016*

S_Increase 3.89 3.23 0.037*

Wild driving tendency Irritability 3.44 2.69 0.005*

Slow_Angry 3.73 3.23 0.079**

Driving workload weight Mental burden 1.56 1.96 0.090**

Time burden 3.00 2.54 0.050*

**p < 0.1. *p ≤ 0.05.
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“high-speed driving relieves stress,” “obeying the speed
limit disrupts the flow of traffic,” and “on the highway,
driving below the speed limit is inflexible, and the driving
speed should be higher.”

The average values of the drivers in Slowstab were
larger than that of the drivers in Faststab based on the
eight features of the questionnaire information of wild
driving tendency; nevertheless, the independent sample t-
test was not significant. In the driving workload weight,
the average value of the questionnaire information
showed a significant difference only in the time burden
questionnaire (p < 0.05). It has been observed that drivers
who consider time burden important show faster
stabilization.

4.4 | Correlation analysis

In this section, we outline the correlation analysis of fea-
tures in the questionnaire and class variable configured
by the reengagement or stabilization time. The class vari-
able was set as 1 for drivers belonging to Fastreeng and
Faststab and 0 for drivers belonging to Slowreeng and
Slowstab. Table 8 summarizes the correlation coefficients
between features in the questionnaire and class variables.
Features that showed a correlation lower than 0.05 with
the reengagement class variable were “Gender,”
“Concession,” “A_Interrupt,” “Physical burden,”
“Achievement,” and “Effort features.” Some features that
showed a correlation lower than 0.05 with the stabiliza-
tion class variable were “Impatience,” “Concession,”
“A_Interrupt,” “Rest_Area,” “Mental burden,” and
“Frustration.” Gender feature was associated with stabili-
zation time, whereas age and driving experience corre-
lated with reengagement class and stabilization class
variables. It was observed that overspeeding and rough
driving tendencies were more related to both class
variables. Drivers who valued their driving time burden
correlated more positively with faster reengagement and
stabilization time.

5 | CLASSIFICATION ANALYSIS

5.1 | Classification model creation and
prediction method

Before using a Level 3 autonomous vehicle, if it is possi-
ble to predict drivers with slow reengagement and slow
stabilization time using questionnaires, such as drivers’
demographics and driving tendencies information, vehi-
cle education and training will enable stable vehicle
usage. The classification algorithm of machine learning
receives the attributes (explanatory variable) of a data
sample as input and classifies it as one of the categorical
values of the class variable [32]. Classification algorithms
belong to the supervised learning type because they pro-
vide input data along with the class values (0 or 1). A
classification model is built using a training set compris-
ing records with known class labels. The classification
model predicts a class by applying the model to a set of
tests with unknown class labels. In this study, we follow
the process in Figure 4 to predict the driver’s control
transition time class based on the subjective driving
questionnaire.

As presented in Table 4, we divided the reengagement
time into two groups: slow and fast drivers. Similarly, in
Table 6, we divided stabilization time into two groups:
slow and fast drivers. We want to determine whether the
reengagement time class can be classified and predicted
by inputting questionnaire information into the classifier.
Additionally, we want to determine whether the stabili-
zation time class can be classified and predicted by input-
ting questionnaire information into the classifier. We
developed a machine learning model for prediction using
the k-nearest neighborhood (k-NN), support vector
machine (SVM), decision tree, random forest, and logistic
regression algorithms. Among the compared methods,
the k-NN classifier performed best in classifying and
predicting the slow and fast drivers.

Based on the data related to the 114 people compris-
ing reengagement time class in Table 4, Slowreeng and

TAB L E 7 Independent sample t-test results for the questionnaire by the stabilization time group

Feature group Detailed features Average in Faststab Average in Slowstab p-value (two-sided)

Speed driving tendency Stress 3.85 4.40 0.095**

S_Compliance 2.73 3.33 0.070**

Flexibility 3.94 4.67 0.064**

S_Increase 3.45 4.07 0.086**

Driving workload weight Time burden 2.95 2.40 0.038*

**p < 0.1. *p ≤ 0.05.
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Fastreeng classes have 48 and 66 people, respectively; thus,
there is a slight imbalance of data between the two clas-
ses. Similarly, the Slowstab class in Table 5 has 30 people,
and the Faststab class has 84 people; hence, there is
an imbalance in class data. We use the leave-one-out
method because the performance evaluation results are
reliable when the test and training data do not overlap.

Thus, a classification model is created and evaluated by
separating the data from one driver as the test data and
those from the remaining 113 drivers as the training data
(Figure 5). This process was repeated until the data of all
114 drivers were used as the test data sample once. The
performance measure was computed by averaging the
prediction results of all 114 drivers.

F I GURE 4 Creation and prediction process of control authority transition performance classification model

TAB L E 8 Correlation between class variables and questionnaire features

Feature group Detailed features Correlation of reengagement Correlation of stabilization

Demographic information Age 0.163 0.149

Gender 0.015a �0.153

D_Exp �0.127 0.210

Speed driving tendency Pleasure 0.230 �0.117

Stress 0.190 �0.157

Impatience 0.188 �0.035a

S_Compliance 0.153 �0.170

Flexibility 0.148 �0.174

Accident 0.202 �0.055

Q_Start 0.218 �0.067

S_Increase 0.196 �0.162

Wild driving tendency Y_Operation 0.120 �0.079

Concession 0.048a 0.038a

A_Interrupt 0.044a �0.141

Irritability 0.256 �0.142

Slow_Angry 0.165 �0.060

A_Stop 0.132 �0.071

Rest_Area 0.124 �0.046a

No_Concessions 0.060 �0.113

Driving workload weight Mental burden �0.160 �0.035a

Physical burden 0.040a �0.082

Time burden 0.185 0.199

Achievement 0.044a �0.095

Effort �0.009a 0.109

Frustration 0.114 0.043a

aVariables with correlation values lower than 0.05.
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There is a class imbalance in the training data com-
prising 113 drivers in the leave-one-out method (Tables 4
and 6). Besides the test with original data, we designed
an oversampling approach to resolve the class imbalance.
We performed oversampling on the training data, trained
the classification model, and predicted the test data class
label.

The k-NN algorithm is one of the pattern recognition
methods based on the concept that data points of the
same class should be closer in feature space. Given a
training dataset of n points with the desired class speci-
fied as {(X1, y1), (X2, y2), …, (Xn, yn)}, where (Xi, yi) repre-
sents data pair i, Xi is the feature vector and yi is the
corresponding target class. Objects are classified by the
majority vote of their k-NNs. Here, k is a positive integer,
which is usually a small number. If k = 1, then the object
is assigned to the class of its nearest neighbor. It is the
simplest machine learning algorithm and provides
instance-based learning. The k-NN algorithm is easy to
implement and debug because the process is transparent.
There are noise reduction techniques that can effectively
improve the classifiers’ accuracy [32–35].

5.2 | Performance evaluation

In this study, we performed a leave-one-out cross-
validation to evaluate the k-NN classifier. To evaluate the

performance of the classification model, we used the
confusion matrix in Table 9, accuracy, precision, recall,
F1 score, and Matthews correlation coefficient (MCC)
[32, 36]. True positive (TP) is the number of data samples
predicted to be positive when belonging to the positive
class. False positive (FP) is the number of data samples
predicted to be positive when belonging to the negative
class. True negative (TN) and false negative (FN) are
defined similarly. We set the slow driver as positive and
the fast driver as negative to predict a driver with slow
control authority transition performance and to select it
as a target for education and training.

Accuracy is calculated by dividing the number of
correct predictions by the total number of predictions, as
expressed in 1. Precision and recall are measures used in
binary classification applications where the successful
detection of a class is considered more significant than
the detection of the other class [32].

Accuracy¼ TPþTN
TPþFNþFPþTN

: ð1Þ

Precision is defined as the ratio of the number of
samples that belong to positive classes among the
samples predicted as the positive class, as expressed in 2.
The higher the precision value, the better the classifica-
tion model. In this study, it is the ratio of actual
slow drivers to those predicted as drivers with slow
reaction time.

Precision¼ TP
TPþFP

: ð2Þ

A recall is the ratio of the samples predicted to belong
to the positive class among the samples belonging to the
actual positive class, as expressed in 3. The higher the
recall value, the better the classification model. In this
study, it is the ratio predicted as a slow driver among the
actual slow drivers. Recall is also called the TP rate or
sensitivity.

Recall¼ TP
TPþFN

: ð3Þ

TAB L E 9 Confusion matrix

Predicted class

Positive Negative

Actual class Positive TP (true positive) FN (false negative)

Negative FP (false positive) TN (true negative)

F I GURE 5 Modeling process using the leave-one-out method
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F1 score is the harmonic average of precision and
recall, and the performance can be expressed as a single
number, as expressed in 4. A high value of the F1 score
ensures that precision and recall are reasonably high.

F1 score¼ 2� 1
1

Precisionþ 1
Recall

¼ 2�Precision�Recall
PrecisionþRecall

: ð4Þ

MCC can also be used as a performance evaluation
measure of the classification model and is defined in 5
[36]. The MCC calculation method is the same as that of
the Phi coefficient. MCC values from �1.0 to �0.7 and
from �0.7 to �0.3 indicate strong and weak negative
associations, respectively. MCC values from �0.3 to 0.3
indicate little or no association. MCC values from 0.3 to
0.7 and from 0.7 to 1.0 are judged as weak and strong
positive associations [37].

MCC¼ TP�TNð Þ� FP�FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFNð Þ TNþFPð Þ TPþFPð Þ TNþFNð Þp : ð5Þ

We need to construct a classification model that
detects drivers with slow control transition performance
as much as possible, although it causes misclassification
for fast control-switching drivers. Thus, it is necessary to
determine a model with a high recall value to predict
drivers with slow reengagement and those with slow
stabilization as well as to educate the autonomous
vehicle control transfer and manual driving stabilization
so that the control authority transition can be performed
quickly.

5.3 | Selection of feature variables

To verify the best feature combination for classifying the
take-over transition time using subjective driving ten-
dency information, we composed 11 feature groups by
combining 25 features in the questionnaire in Table 2.
The classification analysis was conducted using the k-NN
classifier for 11 cases (Table 10).

From Cases 1 to 4, the feature group for constructing
a classification consists of the features of each category in
the questionnaire, such as demographic information,
speed driving tendency information (Speed), wild driving
tendency information (Wild), and driving workload-
weighting information (NASA). From Cases 5 to 10, the
features in four categories were combined in various
ways. In Case 11, the features with a correlation above
0.05 in Table 8 were selected.

5.4 | Classification results

Table 11 summarizes the results of classifying slow
reengagement and fast reengagement drivers as leave-
one-out using the k-NN classifier in the original 114 data.
The best performance was achieved when a training
model for classification was created by extracting features
based on the correlation in Case 11. The accuracy, preci-
sion, recall, and F1 score were 69%, 0.64, 0.62, and 0.63,
respectively. As the MCC is 0.37, we deduced that man-
ual driving reengagement performance can be predicted
using the driving tendency questionnaires before driving
a Level 3 autonomous vehicle. On the right side of
Table 11, when the training model was constructed on
the oversampled training data, the performance in Case
10 was the best. The classification model in Case 10 was
trained using demographics, speed and wild driving ten-
dencies, and workload weight information as features.
Here, the accuracy, precision, recall, and F1 score were
71%, 0.63, 0.77, and 0.69, respectively. The MCC value
was 0.43, indicating a stronger association than the
performance in the left table.

Table 12 presents the results of classifying slow and
fast stabilization drivers using a k-NN classifier. Using
only the original 114 drivers’ data, the best performance
was achieved when the demographic information, such
as age, gender, and driving experience in Case 1, was
used for training. The accuracy, precision, recall, and F1
score were 77%, 0.59, 0.43, and 0.5, respectively. As the
MCC is 0.36, using the demographic questionnaire, we
concluded that the driver’s manual driving stabilization
performance could be predicted before driving a Level
3 autonomous vehicle. Performances of Cases 6, 8, and

TABL E 1 0 Features used in the classification model

Case Description of features

1 Demographics

2 Speed

3 Wild

4 NASA

5 Demographics + Speed

6 Demographics + Speed + NASA

7 Demographics + Wild

8 Demographics + Wild + NASA

9 Demographics + Speed + Wild

10 Demographics + Speed + Wild + NASA

11 Features with a correlation lower than 0.05 are
removed
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11 were good when a classification model was created by
composing oversampling data. Here, the measurements
were between 75% and 76% accuracy, 0.51 and 0.53 preci-
sion, 0.97 and 1.0 recall, and 0.67 and 0.68 F1 scores. The
MCC value was 0.58, indicating a stronger association
than the performance on the left in the table.

6 | CONCLUSIONS AND FUTURE
WORK

To reduce the risk of traffic accidents, several countries
are installing vehicle restraint systems on roads and mak-
ing significant efforts in researching core components,
semiconductors, software, mapping, and automobiles
necessary to prepare for the era of autonomous driving
[38–43]. Many people expect autonomous vehicles to
reduce the number of accidents caused by human error.
Autonomous driving reduces the burden of driving. It
can improve the drivers’ productivity and provide them
with leisure time in the vehicle. Additionally, it can
reduce traffic accidents caused by manual driving and
improve traffic flow efficiency. Autonomous vehicles
offer the advantage of comfortable mobility in terms of
sustainable mobility for the elderly and disabled.

For Level 3 autonomous driving, the driver should
regain control of the vehicle whenever a TOR occurs.
Thus, it is essential to switch between manual operation
mode and ADS safely [1]. When the driver initiates a
transfer of control to ADS, the chance of an accident is
low as the autonomous driving mode is immediately acti-
vated. However, if the control authority is switched from
ADS to manual driving, the response may be delayed
depending on the driver’s NDRT and driving efficiency.
These issues in the control transition process can delay
take-over time, consequently leading to an accident.

Using previously reported studies on the effect of pro-
viding driving situation information [5], providing a pre-
cue [6], using visual/auditory/tactile modality [7], and
driving readiness [8,9], a method for the driver to quickly
recognize TOR information and improve control transi-
tion performance was presented.

However, there have been few studies on predicting
control transition performance based on the driver’s
characteristic and subjective tendencies and determining
whether education or training is required for the driver.
We used statistical analysis to examine whether driver’s
subjective information, such as demographics, speed and
wild driving tendencies, and driving workload-weighting
information, which can be obtained through question-
naires in advance, affects the control transition perfor-
mance. Additionally, to verify the practical utility of
subjective questionnaires information, we used the

machine learning method to identify whether it was pos-
sible to classify and predict high- and low-performance
drivers using only survey information before driving a
Level 3 vehicle.

The statistical analysis result showed that female
drivers tend to have slower control transitions than male
drivers. Younger drivers physically reengaged more
quickly during manual driving and had a shorter stabili-
zation time than middle-aged drivers. Statistical analysis
shows that the control transition performance varies
among drivers. To determine how performance
differences in control transition correlate with the
subjective driving tendency information, we classified
slow and fast drivers and analyzed information using
prequestionnaires. After performing an independent sam-
ple t-test, we obtained significant differences in driving
tendency questionnaire values between drivers with
faster or slower reengagement time for manual driving.
Similarly, there was a significant difference in the man-
ual operation stabilization time. We conducted a correla-
tion analysis to distinguish between slow and fast drivers
based on their reengagement and stabilization time to
examine if there was a correlation with the questionnaire
items. The stabilization time was correlated with the gen-
der of the driver, whereas the reengagement and stabili-
zation time were correlated with the age and driving
experience of the driver. It was observed that over-
speeding and rough driving tendencies were more related
to reengagement time than stabilization time. Drivers
who responded that they value their time burden more
when driving exhibited a good correlation with the
reengagement and stabilization time performance. From
the statistical analysis, the questionnaire information
indicates that the drivers’ subjective tendency is corre-
lated with the drivers’ manual driving reengagement and
stabilization time. It is deduced that drivers’ control tran-
sition performance can be predicted using the question-
naire information before driving a Level 3 vehicle.

We developed a machine learning model for predic-
tion using k-NN, SVM, decision tree, random forest, and
logistic regression algorithms by progressively combining
demographics, speeding and wild driving tendencies, and
driving workload-weighted feature information. Among
the compared methods, the k-NN classifier performed
best in classifying and predicting slow and fast drivers
with respect to the reengagement and settling time than
other algorithms. The classification performance with
respect to reengagement time exhibited a prediction
accuracy, a recall, an F1 score, and an MCC value of 71%,
0.63, 0.69, and 0.43, respectively. The performance of the
stabilization time classification and prediction model was
evaluated with a 75%–76% accuracy, 0.51–0.53 precision,
0.97–1.0 recall, 0.67–0.68 F1 score, and 0.58 MCC.
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To prepare for commercializing Level 3 autonomous
vehicles, the government should require drivers who are
new to Level 3 vehicles to fill out a subjective driving ten-
dency questionnaire to understand their driving tenden-
cies and ability to drive vehicles safely. The results of this
study can be used to establish government policies so that
drivers who are new to autonomous vehicles can under-
stand their driving tendencies through questionnaires
and receive education or training on using autonomous
vehicles. Additionally, autonomous vehicle manufac-
turers can use the results of this study to develop a per-
sonalized human–vehicle interface, which can select the
method for providing driving situation information,
timing of providing the precue, and method for providing
the TOR according to the driver’s subjective tendencies
and characteristics.
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