• 제목/요약/키워드: Personalized Page Rank

검색결과 9건 처리시간 0.025초

개인화 정보 검색에 대한 연구 (A Study of Personalized Information Retrieval)

  • 김태환;전호철;최중민
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.683-687
    • /
    • 2008
  • 사람들은 월드 와이드 웹(World Wide Web)상에서 사용자가 원하는 정보를 검색하는 여러 알고리즘들을 구현해 왔다. 이렇게 구현된 검색 알고리즘 중 가장 좋은 기술을 가지고 있는 곳은 페이지랭크(PageRank)방식의 구글이다. 하지만 페이지랭크 방식, 즉 외부에서 강조하는 링크가 많은 문서로 검색하여 가장 많은 링크를 가기고 있는 문서를 상위에 보여주는 방식으론 사용자가 원하는 문서를 찾기 힘들다. 개인에게 가치가 있는 문서를 찾기보다 대중에게 가치가 있는 문서를 찾기 때문이다. 이러한 문제를 해결하기 위하여 본 논문에서는 대중적 가치와 개인적 가치를 혼합한 개인화 검색 엔진을 제안한다.

  • PDF

페이지 랭크지수와 질의 확장을 이용한 재랭킹 방법 (A Reranking Method Using Query Expansion and PageRank Check)

  • 김태환;전호철;최중민
    • 정보처리학회논문지B
    • /
    • 제18B권4호
    • /
    • pp.231-240
    • /
    • 2011
  • 사람들은 월드 와이드 웹 상에서 사용자가 원하는 정보를 검색하는 여러 알고리즘들을 구현해 왔다. 이렇게 구현된 검색 알고리즘 중 가장 좋은 기술을 가지고 있는 곳은 페이지랭크(PageRank)방식의 구글이다. 하지만 외부에서 참조하는 링크가 많은 문서를 가지고 있는 문서 즉, 대중들이 관심을 가지는 문서를 상위에 보여주는 페이지랭크 방식으론 사용자가 원하는 문서를 찾아서 제공하지 못할 수 있다. 개인에게 가치가 있는 문서를 찾기보다 대중에게 가치가 있는 문서를 찾기 때문이다. 이러한 문제를 해결하기 위하여 본 논문에서는 어휘의 의미를 정확히 표현하고 있는 워드넷을 이용하여 사용자 질의 이력 정보를 분석하여 현재 질의를 확장한 개인적 가치와 페이지 랭크지수를 이용한 대중적 가치를 모두 고려한 방법을 제안한다. 실험결과 제안한 방법은 상위 30개의 검색결과 중 평균 약 60% 결과들에 대해 만족하는 것으로 나타났으며, 구글 검색 결과에 비해 평균 약 14% 향상된 만족도를 나타내었다.

Finding Top-k Answers in Node Proximity Search Using Distribution State Transition Graph

  • Park, Jaehui;Lee, Sang-Goo
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.714-723
    • /
    • 2016
  • Considerable attention has been given to processing graph data in recent years. An efficient method for computing the node proximity is one of the most challenging problems for many applications such as recommendation systems and social networks. Regarding large-scale, mutable datasets and user queries, top-k query processing has gained significant interest. This paper presents a novel method to find top-k answers in a node proximity search based on the well-known measure, Personalized PageRank (PPR). First, we introduce a distribution state transition graph (DSTG) to depict iterative steps for solving the PPR equation. Second, we propose a weight distribution model of a DSTG to capture the states of intermediate PPR scores and their distribution. Using a DSTG, we can selectively follow and compare multiple random paths with different lengths to find the most promising nodes. Moreover, we prove that the results of our method are equivalent to the PPR results. Comparative performance studies using two real datasets clearly show that our method is practical and accurate.

개인별 유전자 네트워크 구축 및 페이지랭크를 이용한 환자 특이적 암 유발 유전자 탐색 방법 (Cancer Patient Specific Driver Gene Identification by Personalized Gene Network and PageRank)

  • 정희원;박지우;안재균
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권12호
    • /
    • pp.547-554
    • /
    • 2021
  • 암을 유발하는 유전자는 모든 암 환자에게 공통적인 것은 아니며, 이러한 환자 특이적 암 유발 유전자의 탐색은 개인 맟춤형 암 치료 및 항암제 개발에 있어서 매우 중요하다. 환자 특이적 암 유발 유전자를 찾기 위한 생물 정보학 연구들이 있어왔지만, 아직 정확도 면에서는 발전의 여지가 있다. 본 논문에서는 환자 특이적 암 유발 유전자를 탐색하기 위하여 NPD (Network based Patient-specific Driver gene identification)라는 방법을 제안한다. NPD는 환자 특이적 유전자 네트워크를 구축하고, 여기에 수정된 PageRank 알고리즘을 적용하여 유전자에 점수를 부여한 후, 유전적 변이 데이터를 사용한 승률 계산 방법을 통하여 암 유발 유전자를 찾는 세 단계로 이루어진다. TCGA 데이터 베이스의 여섯 개의 암 데이터에 NPD를 적용한 결과, NPD가 기존의 환자 특이적 암 유발 유전자 탐색 방법들보다 전체적으로 높은 F1 점수를 보여줌을 확인할 수 있었다.

그래프 모델과 중심성 분석을 이용한 당뇨환자의 처방 및 검사결과의 상관관계 분석 (Analysis on Correlation between Prescriptions and Test Results of Diabetes Patients using Graph Models and Node Centrality)

  • 유강민;박성찬;이수진;유경상;이상구
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권7호
    • /
    • pp.482-487
    • /
    • 2015
  • 본 논문은 11,938명의 당뇨환자 의료데이터를 그래프 모델로 변환하고 중심성 분석 기법으로 처방과 검사결과 간 상관관계를 추출해내는 과정에 대해 다루고 있다. 관계형 데이터베이스로 저장되어있는 데이터를 RDB2Graph 프레임워크를 사용하여 유의미한 그래프로 변환하였다, 변환된 그래프에 Personalized PageRank를 적용하여 처방과 검사 간 상관관계를 분석했다. 사용된 그래프 모델에는 환자 별 의료 기록 모델과 의료 기록의 시간적 간격을 고려한 모델이 있다. 분석 결과 기존의 의학적 지식에 부합하는 상관관계를 다수 발견할 수 있었으며, 본 논문에서는 발견한 상관관계 중 주요 사례를 소개하여 본 분석 방법의 유효함을 보인다.

A Query Randomizing Technique for breaking 'Filter Bubble'

  • Joo, Sangdon;Seo, Sukyung;Yoon, Youngmi
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권12호
    • /
    • pp.117-123
    • /
    • 2017
  • The personalized search algorithm is a search system that analyzes the user's IP, cookies, log data, and search history to recommend the desired information. As a result, users are isolated in the information frame recommended by the algorithm. This is called 'Filter bubble' phenomenon. Most of the personalized data can be deleted or changed by the user, but data stored in the service provider's server is difficult to access. This study suggests a way to neutralize personalization by keeping on sending random query words. This is to confuse the data accumulated in the server while performing search activities with words that are not related to the user. We have analyzed the rank change of the URL while conducting the search activity with 500 random query words once using the personalized account as the experimental group. To prove the effect, we set up a new account and set it as a control. We then searched the same set of queries with these two accounts, stored the URL data, and scored the rank variation. The URLs ranked on the upper page are weighted more than the lower-ranked URLs. At the beginning of the experiment, the difference between the scores of the two accounts was insignificant. As experiments continue, the number of random query words accumulated in the server increases and results show meaningful difference.

의사연관 피드백과 퍼지 연관을 이용한 개인화 문서 스니핏 추출 방법 (Personalized Document Snippet Extraction Method using Fuzzy Association and Pseudo Relevance Feedback)

  • 박선;조광문;양후열;이성로
    • 대한전자공학회논문지SP
    • /
    • 제49권2호
    • /
    • pp.137-142
    • /
    • 2012
  • 스니핏(snippet)이란 검색엔진이 사용자에게 제공하는 웹 페이지를 대표할 수 있는 요약된 정보이다. 스니핏은 검색엔진의 페이지 순위와 함께 사용자의 페이지 방문에 큰 영향을 준다. 스니핏을 이용시 가끔 사용자의 의도와는 다른 잘못된 웹 페이지를 방문할 수 있다. 이것은 스니핏을 추출하는 방법이 사용자의 의도를 정확히 이해하는 것이 어렵기 때문이다. 본 논문은 이러한 문제를 해결하기 위해 의사연관 피드백과 퍼지 연관을 이용한 새로운 스니핏 추출 방법을 제안한다. 제안방법은 의사연관 피드백을 이용하여 사용자의 질의를 확장학고, 확장된 질의와 웹 페이지 사이에 퍼지 연관을 이용함으로써 사용자의 의도가 의미적으로 더 잘 포함되는 스니핏을 추출할 수 있다. 실험결과 제안방법이 다른 방법에 비하여서 스니핏 추출에 더 좋은 성능을 보인다.

편향된 의견 문서 검출을 위한 이상치 탐지 기법 (Outlier Detection Techniques for Biased Opinion Discovery)

  • 연종흠;심준호;이상구
    • 한국전자거래학회지
    • /
    • 제18권4호
    • /
    • pp.315-326
    • /
    • 2013
  • 소셜 미디어에서는 상품평, 영화평 등의 다양한 종류의 의견이 표현되고 있으며, 사용자들이 물품 구매 등에 있어 이러한 의견을 참고로 하여 결정을 내리는 것은 일반적이 되었다. 하지만 의견 정보의 활용도가 높아질수록 이를 부적절하게 왜곡하는 사례 또한 증가하고 있다. 예를 들어, 홍보를 목적으로 과도하게 긍정적인 의견이 포함된 리뷰를 작성하거나, 반대로 일반적인 평가에서 벗어나 과도하게 부정적인 의견을 게시하는 경우 등이다. 편향된 의견은 소셜 미디어의 신뢰성과 연결 되기 때문에 이를 검출하는 것은 점차 중요한 문제로 대두되고 있다. 기존의 오피니언 마이닝 혹은 감성 분석은 문서를 분석하여 그 문서가 가지고 있는 의견의 성향을 판단하는 기법이다. 하지만 기존의 연구는 의견을 단순히 긍정/부정으로만 분류하는 방향으로 연구가 이루어져 왔으며, 특히 사전에 의견 성향에 따라 분류된 충분한 양의 학습 데이터가 필요하다는 단점이 있다. 본 논문에서는 학습데이터가 없는 경우에, 전체 문서의 의견 성향 분포에서 벗어난 의견 문서를 검출하는 기법을 제안한다. 여기에는 각도기반 이상치 탐지와, 개인화된 페이지랭크 방법을 활용한다. 또한 영화 리뷰 문서를 대상으로 실험을 수행하여 제안한 방법들의 성능을 분석하였다.

집단지성 기반 학습자료 북마킹 서비스 시스템 (Learning Material Bookmarking Service based on Collective Intelligence)

  • 장진철;정석환;이슬기;정치훈;윤완철;이문용
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.179-192
    • /
    • 2014
  • 최근 IT 환경의 변화에 따라 웹 서비스를 기반으로 대규모 사용자 대상의 상호 참여적인 MOOC(Massive Open Online Courses)과 같은 온라인 교육 환경이 부상하고 있다. 그러나 온라인 교육 시스템은 원거리로 학습이 이루어짐에 따라 학습자의 자발적 동기를 꾸준히 유지하기 어려우며, 또한 학습자 간에 지식을 공유하고 공유한 지식을 활용하는 기능이 부족하다. 이러한 문제를 극복하기 위해 구성주의적 학습이론과 집단지성에 기반하여 학습자가 보유한 학습자료를 공유하고 개인화된 학습자료 추천을 받을 수 있는 학습자료 북마킹 서비스인 WeStudy를 구현하였다. 위키피디아(Wikipedia), 슬라이드쉐어 (SlideShare), 비디오렉쳐스 (VideoLectures) 등 현존하는 집단지성 기반 서비스들의 주요 기능으로부터 필요한 집단지성 기능들을 검토하였으며, 본 서비스의 주요 기능으로 1) 리스트 및 그래프 형태의 학습자료 리스트 시각화, 2) 개인화된 학습자료 추천, 3) 보다 상세한 학습자료 추천을 위한 관심 학습자 지정 등을 도출하여 시스템을 설계하였다. 이후, 웹 기반으로 구현된 세 가지 주요기능 별로 개량된 휴리스틱 사용성 평가 방법을 통해 개발된 시스템의 사용성 평가를 실시하였다. 10명의 HCI 분야 전공자 및 현업 종사자를 대상으로 정량적 및 정성적인 평가 결과, 세 가지의 주요 기능에서 전반적으로 사용성이 우수한 것으로 판정되었다. 주요 기능 별 정성적인 평가에서 도출된 여러 마이너 이슈들을 반영할 필요가 있으며, 향후 대규모 사용자를 대상으로 본 서비스를 보급하고 이용할 수 있도록 제공하여 자발적인 지식 공유 환경을 조성할 수 있을 것으로 전망된다.