• Title/Summary/Keyword: Personal exposure dose(Dose)

Search Result 78, Processing Time 0.022 seconds

Bias-corrected Hp(10)-to-Organ-Absorbed Dose Conversion Coefficients for the Epidemiological Study of Korean Radiation Workers

  • Jeong, Areum;Kwon, Tae-Eun;Lee, Wonho;Park, Sunhoo
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.158-166
    • /
    • 2022
  • Background: The effects of radiation on the health of radiation workers who are constantly susceptible to occupational exposure must be assessed based on an accurate and reliable reconstruction of organ-absorbed doses that can be calculated using personal dosimeter readings measured as Hp(10) and dose conversion coefficients. However, the data used in the dose reconstruction contain significant biases arising from the lack of reality and could result in an inaccurate measure of organ-absorbed doses. Therefore, this study quantified the biases involved in organ dose reconstruction and calculated the bias-corrected Hp(10)-to-organ-absorbed dose coefficients for the use in epidemiological studies of Korean radiation workers. Materials and Methods: Two major biases were considered: (a) the bias in Hp(10) arising from the difference between the dosimeter calibration geometry and the actual exposure geometry, and (b) the bias in air kerma-to-Hp(10) conversion coefficients resulting from geometric differences between the human body and slab phantom. The biases were quantified by implementing personal dosimeters on the slab and human phantoms coupled with a Monte Carlo method and considered to calculate the bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients. Results and Discussion: The bias in Hp(10) was significant for large incident angles and low energies (e.g., 0.32 for right lateral at 218 keV), whereas the bias in dose coefficients was significant for the posteroanterior (PA) geometry only (e.g., 0.79 at 218 keV). The bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients derived in this study were up to 3.09- fold greater than those from the International Commission on Radiological Protection publications without considering the biases. Conclusion: The obtained results will aid future studies in assessing the health effects of occupational exposure of Korean radiation workers. The bias-corrected dose coefficients of this study can be used to calculate organ doses for Korean radiation workers based on personal dose records.

Radiation Exposure Dose on Persons Engaged in Radiation-related industries (방사선관계종사자의 피폭선량에 대한 연구)

  • Choi, Gui-Nam;Jeon, Ju-Seob;Kim, Yong-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.27-37
    • /
    • 2012
  • From Jan 2002 to June 2011, we evaluated 4419 cases of radiation dose of 323 radiation related individuals consist of physician, nurses, technician and others in local C national university hospital. On annual analysis, year 2003 ranked the highest and 2007 the lowest dose. Dose was relatively higher in male than female. Dose was highest in 30s on age basis analysis. Dose was high in order of physician, nurse, and technician. Average radiation dose was high in order of cardiovascular center, radiologic intervention ceter, radiologist individuals, and fluoroscopic contrast study room. Those doses did not excess the standard dose recommended by ICRP (20mSv/year). However unlike average dose, there are wide variations of dose in individuals. Therefore radiation related workers should do one's best in personal radiation exposure dose management for achievement of minimum dose of radiation.

Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor (범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발)

  • Jong-kyu Cheon;Sunghwan Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.367-373
    • /
    • 2023
  • Aircrews and passengers are exposed to radiation from cosmic rays and secondary scattered rays generated by reactions with air or aircraft. For aircrews, radiation safety management is based on the exposure dose calculated using a space-weather environment simulation. However, the exposure dose varies depending on solar activity, altitude, flight path, etc., so measuring by route is more suggestive than the calculation. In this study, we developed an instrument to measure the cosmic radiation dose using a general-purpose Si sensor and a multichannel analyzer. The dose calculation applied the algorithm of CRaTER (Cosmic Ray Telescope for the Effects of Radiation), a space radiation measuring device of NASA. Energy and dose calibration was performed with Cs-137 662 keV gamma rays at a standard calibration facility, and good dose rate dependence was confirmed in the experimental range. Using the instrument, the dose was directly measured on the international line between Dubai and Incheon in May 2023, and it was similar to the result calculated by KREAM (Korean Radiation Exposure Assessment Model for Aviation Route Dose) within 12%. It was confirmed that the dose increased as the altitude and latitude increased, consistent with the calculation results by KREAM. Some limitations require more verification experiments. However, we confirmed it has sufficient utilization potential as a cost-effective measuring instrument for monitoring exposure dose inside or on personal aircraft.

Correlation between the Portable X-ray and the Radiation Exposure dose in the Emergency Department: Cohort Study (응급실에서 이동식 단순 X-선 검사와 피폭선량과의 상관관계: 코호트 연구)

  • Kim, Yu Jung;Ahn, Hee Cheol;Sohn, You Dong;Ahn, Ji Yoon;Park, Seung Min;Lee, Won Woong;Lee, Young Hwan
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.11 no.2
    • /
    • pp.101-105
    • /
    • 2013
  • Purpose: This study was conducted in order to determine the relationship between the number of portable X-rays and the radiation exposure dose for emergency medical service providers working in the emergency department (ED). Methods: A prospective study was conducted from February 15, 2013 to May 15, 2013 in the ED in an urban hospital. Six residents, seven emergency medical technicians (EMT), and 24 nurses were enrolled. They wore a personal radiation dosimeter on their upper chest while working in the ED, and they stayed away from the portable X-ray unit at a distance of at least 1.8 m when the X-ray beam was generated. Results: The total number of portable x-rays was 2089. The average total radiation exposure dose of emergency medical service providers was $0.504{\pm}0.037$ mSv, and it was highest in the EMT group, 0.85(0.58-1.08) mSv. The average of the total number of portable X-rays was highest in the doctor group, 728.5(657.25-809). The relationship between the number of portable X-rays and the radiation exposure dose was not statistically significant(-0.186, p=0.269). Conclusion: Under the condition of staying away from the portable X-ray unit at a distance of least 1.8 m, the relationship between the number of portable X-rays and the radiation exposure dose was not statistically significant.

  • PDF

Intent to Use a Smartphone Application for Radiation Monitoring in Correlation with Anxiety about Exposure to Radiation, Recognition of Risks, and Attitudes toward the Use of Radiation

  • Han, Eunkyoung;Rott, Carsten;Hong, Seung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.205-211
    • /
    • 2017
  • Background: Radiation is used in a variety of areas, but it also poses potential risks. Although radiation is often used with great effectiveness in many applications, people perceive potential risks associated with radiation and feel anxious about the possibility of radiation exposure. Various methods of measuring radiation doses have been developed, but there is no way for the general public to measure their doses with ease. Currently, many people use smartphones, which provide information about the location of an individual phone through network connections. If a smartphone application could be developed for measuring radiation dosage, it would be a very effective way to measure individuals' radiation doses. Thus, we conducted a survey study to assess the social acceptance of such a technology by the general public and their intent to use that technology to measure radiation doses, as well as to investigate whether such an intention is correlated with anxiety and attitudes toward the use of radiation. Materials and Methods: A nationwide online survey was conducted among 355 Koreans who were 20 years old or older. Results and Discussion: Significant differences were found between the genders in attitudes, perceptions of radiation risk, and fears of exposure to radiation. However, a significant difference according to age was observed only in the intent to use a smartphone dose measurement application. Attitudes towards the use of radiation exerted a negative effect on radiation risk perception and exposure anxiety, whereas attitudes towards the use of radiation, risk perception, and anxiety about exposure were found to have a positive impact on the intent to use a smartphone application for dose measurements. Conclusion: A survey-based study was conducted to investigate how the general public perceives radiation and to examine the acceptability of a smartphone application as a personal dose monitoring device. If such an application is developed, it could be used not only to monitor an individual's dose, but also to contribute to radiation safety information infrastructure by mapping radiation in different areas, which could be utilized as a useful basis for radiation research.

A Study on the Environmental Radiation Dose Measurement in the Nuclear Medicine Department (핵의학과에서 환경방사선량 측정에 대한 연구)

  • Kang, Bo-Sun;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2118-2123
    • /
    • 2010
  • Korean individual occupational exposure control is focused on the retrospective service to the over-exposed person by the reading of personal dosimeter. Since the radiophamaceuticals using in the nuclear medicine department are uncontained radiation sources, the potential exposure at working environment is very high. Moreover, a patient remains radioactive for hours or even days after the administration of a radiopharmaceutical for diagnosis or treatment. Thus, the proper working environmental exposure control must be established and executed to protect not only the affiliated employees, but also guardians accompanying patients and temporarily visiting public from the exposure by the patients. Japanese radiation protection law regulates working environmental radiation exposure by regularly measuring and filing the environmental dose for years. This study was aimed at measuring working environmental radiation dose in the nuclear medicine department of an university hospital located in Daejeon, Korea. We measured the accumulation radiation dose in air at 8 locations in the nuclear medicine department by using the same method as in Japan with glass dosimeters. The highest dose rate, 0.23 mSv per month, was measured at the waiting room, and the second one is at reception desk. Even though the doses were lower than the Korean constraint dose rate (0.3 mSv/week) at the boundary of the radiation controlled area, it was over the dose limit of public (1 mSv/y) and environment (0.25 mSv/y). Conclusionally, it was found that the new or additional procedure was necessary to less the exposure dose to the receptionist and guardians by the environmental radiation dose in the nuclear medicine department.

Dose estimation of cone-beam computed tomography in children using personal computer-based Monte Carlo software (PCXMC 소프트웨어를 이용한 소아에서의 CBCT 환자선량 평가)

  • Kim, Eun-Kyung
    • The Journal of the Korean dental association
    • /
    • v.58 no.7
    • /
    • pp.388-397
    • /
    • 2020
  • Objective: The purpose of the study was to calculate the effective and absorbed organ doses of cone-beam computed tomography (CBCT) in pediatric patient using personal computer-based Monte Carlo (PCXMC) software and to compare them with those measured using thermoluminescent dosimeters (TLDs) and anthropomorphic phantom. Materials and Methods: Alphard VEGA CBCT scanner was used for this study. A large field of view (FOV) (20.0 cm × 17.9 cm) was selected because it is a commonly used FOV for orthodontic analyses in pediatric patients. Ionization chamber of dose-area product (DAP) meter was located at the tube side of CBCT scanner. With the clinical exposure settings for a 10-year-old patient, DAP value was measured at the scout and main projection of CBCT. Effective and absorbed organ doses of CBCT at scout and main projection were calculated using PCXMC and PCXMCRotation software respectively. Effective dose and absorbed organ doses were compared with those obtained by TLDs and a 10-year-old child anthropomorphic phantom at the same exposure settings. Results: The effective dose of CBCT calculated by PCXMC software was 292.6 μSv, and that measured using TLD and anthropomorphic phantom was 292.5 μSv. The absorbed doses at the organs largely contributing to effective dose showed the small differences between two methods within the range from -18% to 20%. Conclusion: PCXMC software might be used as an alternative to the TLD measurement method for the effective and absorbed organ dose estimation in CBCT of large FOV in pediatric patients.

  • PDF

A Study on the Measurement of the Personal Exposure Dose by Film Badge Dosimeter (필름배지선량계에 의한 개인피폭선량 측정에 관한 연구)

  • Chung, Woon-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.37-50
    • /
    • 1994
  • The experimental evaluation of exposure conversion formula using the relationship between optical photo-density, exposure dose and the quality of radiation characteristics of radiation energy to X-ray and ${\gamma}-rays$. The film badge dosimeter is analysed by exposure conversion formula which evaluate image fading characteristics for development time and directional characteristics for incident beam angle. In conclusion, exposure conversion formula evaluated of this study is satisfied with quality decision criterion of the film badge dosimeter.

  • PDF

Exposure Dose of Thyroid, Breast, and Sexual Gland using a Personal Dosimeter in Multiple CT Examinations (다중 CT 검사 시 개인선량계를 이용한 갑상선, 유방, 생식선의 피폭선량)

  • Kim, Hae-Suk;Kim, Jang-Oh;Lee, Yoon-Ji;Heo, Sung-Hoe;Lee, Chang-Ho;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.345-351
    • /
    • 2020
  • In this study, a dose assessment was conducted on the exposure dose of thyroid, breast and sexual gland using a personal dosimeter in multiple CT examinations currently being conducted in health examinations. The dose assessment was measured by attaching TLD and EPD to the locations of the thyroid, breast and sexual gland during CT examinations of Brain, Brain + C-S, Brain + Low lung, Brain + L-S among CT items. The generated dose of equipment, CTDIvol and DLP, was measured. The study found that effective doses were rated 41.7% higher for thyroid TLD in Brain + C-S CT examinations than for the general public, 156% higher for EPD, 10% for breast EPD in Brain + Low Lung CT examinations, 124.4% higher for reproductive TLD and 339.8% higher for Brain + L-S CT examinations. The CTDIvol and DLP analysis results showed that C-S CTDIvol values were higher than the diagnostic reference levels at 0.6%, Low Lung CTDIvol values at 5.7%, DLP values at 11.8% and L-S CTDIvol values at 1.2%. In order to reduce the exposure dose of patients, indiscriminate examination is reduced and dose limit setting is needed in health examination.

Reading and Influence of Personal Dose Meter in University Hospital C (C 대학병원의 개인선량계 판독과 영향)

  • Lee, Joo-Ah
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.357-363
    • /
    • 2022
  • This study aims to improve the safety inspection awareness of occupational exposure and help radiation safety management by analyzing radiation exposure doses by occupational type of radiation related-workers and radiation workers. Radiation-related workers and radiation workers were classified into three occupations (radiological technologist, doctors, and nurses). A nominal risk coefficient based on ICRP 103 was used to calculate the probability of causing side effects of the lungs due to exposure doses. As a result of analyzing the exposure dose of all workers for one year, the exposure dose of radiological technologist among radiation-related workers was 1.63 ± 2.84 mSv, doctors 0.12 ± 0.22 mSv, and nurses 0.59 ± 1.08 mSv. The one-year deep dose for radiation workers was 2.44 ± 3.30 mSv for radiological technologists, 0.19 ± 0.26 mSv for doctors, and 0.12 ± 0.00 mSv for nurses. Due to this dose, the probability of causing side effects in the lungs was 1.2 per 100,000 radiological technologist, 0.096 doctors, and 0.06 nurses. In this study, it is believed that the probability of side effects on lungs by occupation of radiation exposure dose will be studied and used as useful data for radiation safety management in relation to probabilistic effects in the future.