• 제목/요약/키워드: Personal Credit Scoring

검색결과 4건 처리시간 0.019초

Support Vector Machines을 이용한 개인신용평가 : 중국 금융기관을 중심으로 (An Application of Support Vector Machines to Personal Credit Scoring: Focusing on Financial Institutions in China)

  • 딩쉬엔저;이영찬
    • 산업융합연구
    • /
    • 제16권4호
    • /
    • pp.33-46
    • /
    • 2018
  • 개인신용평가는 은행이 대출을 승인할 때 수익성 있는 의사결정을 적절히 유도할 수 있는 효과적인 도구이다. 최근 많은 분류 알고리즘 및 모델이 개인신용평가에 사용되고 있다. 개인신용평가 기법은 대체로 통계적 방법과 비 통계적 방법으로 구분된다. 통계적 방법에는 선형회귀분석, 판별분석, 로지스틱 회귀분석, 의사결정나무 등이 포함된다. 비 통계적 방법에는 선형계획법, 신경망, 유전자 알고리즘 및 Support Vector Machines 등이 포함된다. 그러나 신용평가모형 개발을 위해 어떠한 방법이 최선인지에 관해서는 일관된 결론을 내리기는 어렵다. 본 논문에서는 중국 금융기관의 개인 신용 데이터를 사용하여 가장 대표적인 신용평가 기법인 로지스틱 회귀분석, 신경망 그리고 Support Vector Machines의 성능을 비교하고자 한다. 구체적으로, 세 가지 모형을 각각 구축하여 고객을 분류하고 분석 결과를 비교하였다. 분석결과에 따르면, Support Vector Machines이 로지스틱 회귀분석과 신경망보다 더 나은 성능을 가지는 것으로 나타났다.

영지식 증명을 활용한 프라이버시 보장 신용평가방법 (Privacy-Preserving Credit Scoring Using Zero-Knowledge Proofs)

  • 박철;김종현;이동훈
    • 정보보호학회논문지
    • /
    • 제29권6호
    • /
    • pp.1285-1303
    • /
    • 2019
  • 현재의 신용평가체계에서는 신용정보회사가 개인의 신용정보를 금융기관으로부터 수집하고 이를 기반으로 신용평가를 수행한다. 하지만 이런 신용평가방법은 민감한 신용정보가 하나의 중앙기관에 집중되기에 프라이버시 침해 소지가 있으며, 외부의 공격이 성공할 경우 대규모의 개인정보가 유출될 수 있다. 본 논문에서는 이 문제를 해결하기 위해 개인이 스스로 금융기관으로부터 수집한 신용정보를 바탕으로 신용점수를 계산하고, 이 신용점수가 정상적으로 계산되었음을 영지식 증명과 블록체인으로 증명하는 프라이버시 보장 신용평가방법을 제안한다. 또한 영지식 증명에 이용된 신용정보가 금융기관에서 실제로 제공한 값인지 블록체인을 통해 확인하기 위해, 커밋된 입력에 대해 효율적으로 증명이 가능한 영지식 증명 기법을 제안한다. 이 기법은 Agrawal 등의 기법과 달리 완벽한 영지식성을 제공하며, CRS와 증명의 크기가 작고 증명과 검증 과정이 빠르다. 그리고 제안한 신용평가방법에 실제 환경과 유사한 신용점수 알고리즘을 적용하여 구현 및 실험함으로써 실제 환경에 이용 가능함을 확인하였다.

신용 데이터의 이미지 변환을 활용한 합성곱 신경망과 설명 가능한 인공지능(XAI)을 이용한 개인신용평가 (A Personal Credit Rating Using Convolutional Neural Networks with Transformation of Credit Data to Imaged Data and eXplainable Artificial Intelligence(XAI))

  • 원종관;홍태호;배경일
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권4호
    • /
    • pp.203-226
    • /
    • 2021
  • Purpose The purpose of this study is to enhance the accuracy score of personal credit scoring using the convolutional neural networks and secure the transparency of the deep learning model using eXplainalbe Artifical Inteligence(XAI) technique. Design/methodology/approach This study built a classification model by using the convolutional neural networks(CNN) and applied a methodology that is transformation of numerical data to imaged data to apply CNN on personal credit data. Then layer-wise relevance propagation(LRP) was applied to model we constructed to find what variables are more influenced to the output value. Findings According to the empirical analysis result, this study confirmed that accuracy score by model using CNN is highest among other models using logistic regression, neural networks, and support vector machines. In addition, With the LRP that is one of the technique of XAI, variables that have a great influence on calculating the output value for each observation could be found.

국내 연체경험자의 정상변제 요인에 관한 연구 (A Study on the Factors of Normal Repayment of Financial Debt Delinquents)

  • 최성민;김호영
    • 경영정보학연구
    • /
    • 제23권1호
    • /
    • pp.69-91
    • /
    • 2021
  • 국내 개인신용평가회사들은 과거와 현재 시점의 다양한 금융거래 정보를 활용하여 개인의 신용을 평가하고 있는데, 이 중 과거에 대출을 실행하여 이를 상환 또는 연체한 이력에 대한 정보를 의미하는 '상환이력정보'는 신용평가에 활용되는 다른 항목들에 비해 상대적으로 활용 비중이 높은 항목이다. 그러나 개인이 연체된 채무를 모두 변제하여 현재 연체중인 상태가 아닌 경우에도 과거의 연체 이력이 부정적인 요인으로 최장 5년간 평가에 반영되고 있어 금융소비자에게 과도한 불이익을 준다는 지적이 지속적으로 있어 왔다. 실제로 연체 이력이 있는 개인의 경우, 연체된 채무를 성실하게 변제한 개인(정상변제)과 그렇지 않은 개인(비정상변제)으로 구분할 수 있는데, 이들 간에는 신용도의 차이가 존재하므로 '정상변제'하는 개인의 특징을 확인하여 이들에게 '상환이력정보'의 활용기간을 단축시켜 주는 등의 혜택을 제공하는 것이 바람직하다고 판단된다. 본 연구는 이러한 문제의식에서 출발하여 한국신용정보원에서 보유하고 있는 2019년 12월 말 기준, 개인의 대출·연체·변제 정보에 기반하여 국내 연체경험자의 정상변제 요인을 분석하였다. 방법론은 개인신용평가모형에서 주로 사용하는 로지스틱 회귀모형을 기본으로 하여 의사결정나무, 신경망 모형 등의 머신러닝 방법론을 추가로 활용하였으며, 각 방법론별 성능을 비교해보았다. 실증분석 결과, 연체건수, 대출·연체유형 등이 정상변제 여부에 영향을 미치는 유의한 변수들로 확인되었으며 방법론 중에는 신경망 모형의 성능이 가장 높은 것으로 나타났다. 이러한 연구결과는 연체된 개인 차주의 정상변제 여부에 영향을 미치는 요인을 확인하여 개인신용평가모형을 고도화하는데 도움이 될 수 있을 것으로 보이며 연체 후 성실하게 변제하는 개인을 정책적으로 지원하기 위한 기초자료로도 활용될 수 있을 것으로 보인다. 향후에는 정상변제 요인을 추가 발굴하여 금융업권별 정상변제 요인의 세부적인 차이를 확인하고 이를 실제 모형에 반영하는 연구가 필요할 것이다.