• Title/Summary/Keyword: Peroxisome proliferator-activated receptor ${\gamma}2(PPAR{\gamma}2)$

Search Result 167, Processing Time 0.026 seconds

Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway

  • Gong, Kai;Qu, Bo;Wang, Cairu;Zhou, Jingsong;Liao, Dongfa;Zheng, Wei;Pan, Xianming
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.393-400
    • /
    • 2017
  • Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by lack of insulin and high glucose levels. T2DM can cause bone loss and fracture, thus leading to diabetic osteoporosis. Promoting osteogenic differentiation of osteoblasts may effectively treat diabetic osteoporosis. We previously reported that Sirtuin 1 (Sirt1), a $NAD^+$-dependent deacetylase, promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor (PPAR) ${\gamma}$. We also found that miR-132 regulates osteogenic differentiation by downregulating Sirt1 in a $PPAR{\beta}/{\delta}$-dependent manner. The ligand-activated transcription factor, $PPAR{\alpha}$, is another isotype of the peroxisome proliferator-activated receptor family that helps maintain bone homeostasis and promot bone formation. Whether the regulatory role of $PPAR{\alpha}$ in osteogenic differentiation is mediated via Sirt1 remains unclear. In the present study, we aimed to determine this role and the underlying mechanism by using high glucose (HG) and free fatty acids (FFA) to mimic T2DM in MC3T3-E1 cells. The results showed that HG-FFA significantly inhibited expression of $PPAR{\alpha}$, Sirt1 and osteogenic differentiation, but these effects were markedly reversed by $PPAR{\alpha}$ overexpression. Moreover, siSirt1 attenuated the positive effects of $PPAR{\alpha}$ on osteogenic differentiation, suggesting that $PPAR{\alpha}$ promotes osteogenic differentiation in a Sirt1-dependent manner. Luciferase activity assay confirmed interactions between $PPAR{\alpha}$ and Sirt1. These findings indicate that $PPAR{\alpha}$ promotes osteogenic differentiation via the Sirt1-dependent signaling pathway.

Peroxisome proliferator-activated receptor γ is essential for secretion of ANP induced by prostaglandin D2 in the beating rat atrium

  • Zhang, Ying;Li, Xiang;Liu, Li-Ping;Hong, Lan;Liu, Xia;Zhang, Bo;Wu, Cheng-Zhe;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.293-300
    • /
    • 2017
  • Prostaglandin $D_2$ ($PGD_2$) may act against myocardial ischemia-reperfusion (I/R) injury and play an anti-inflammatory role in the heart. Although the effect of $PGD_2$ in regulation of ANP secretion of the atrium was reported, the mechanisms involved are not clearly identified. The aim of the present study was to investigate whether $PGD_2$ can regulate ANP secretion in the isolated perfused beating rat atrium, and its underlying mechanisms. $PGD_2$ (0.1 to $10{\mu}M$) significantly increased atrial ANP secretion concomitantly with positive inotropy in a dose-dependent manner. Effects of $PGD_2$ on atrial ANP secretion and mechanical dynamics were abolished by AH-6809 ($1.0{\mu}M$) and AL-8810 ($1.0{\mu}M$), $PGD_2$ and prostaglandin $F2{\alpha}$ ($PGF2{\alpha}$) receptor antagonists, respectively. Moreover, $PGD_2$ clearly upregulated atrial peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and the $PGD_2$ metabolite 15-deoxy-${\Delta}12$, 14-$PGJ_2$ (15d-$PGJ_2$, $0.1{\mu}M$) dramatically increased atrial ANP secretion. Increased ANP secretions induced by $PGD_2$ and 15d-$PGJ_2$ were completely blocked by the $PPAR{\gamma}$ antagonist GW9662 ($0.1{\mu}M$). PD98059 ($10.0{\mu}M$) and LY294002 ($1.0{\mu}M$), antagonists of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling, respectively, significantly attenuated the increase of atrial ANP secretion by $PGD_2$. These results indicated that $PGD_2$ stimulated atrial ANP secretion and promoted positive inotropy by activating $PPAR{\gamma}$ in beating rat atria. MAPK/ERK and PI3K/Akt signaling pathways were each partially involved in regulating $PGD_2$-induced atrial ANP secretion.

Induction of Heme Oxygenase-1 By 15-Deoxy-Delta12,14-Prostaglandin J2 Is Mediated Through Activation of Transcription Factor Nrf2 in Mcf-7 Cells

  • Kim, Eun-Hee;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.180-180
    • /
    • 2003
  • Peroxisome proliferator-activated receptor gamma (PPAR-gamma), a member of the nuclear hormone receptor superfamily, is involved in the suppression of growth of several types of tumors such as liposarcoma, cancers of breast, prostate, and colon, possibly through induction of cell cycle arrest and/or apoptosis.(omitted)

  • PDF

Synthesis and Biological Activity of [[(Heterocycloamino)alkoxy] benzyl]-2,4-thiazolidinediones as $PPAR_\gamma$ Agonists

  • Jeon Raok;Kim Yoon-Jung;Cheon Ye-Jin;Ryu Jae-Ha
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.394-399
    • /
    • 2006
  • Benzothiazole derivatives of thiazolidinediones (TZD) were synthesized using a modified Mitsunobu reaction of 2-(benzothiazol-2-ylmethylamino)ethanol (2) with 5-(4-hydroxybenzyl)-3-triphenylmethylthiazolidine-2,4-dione and assayed for activity on peroxisome proliferator-activated receptor (PPAR) subtypes and inhibitory activity of NO production in lipopolysaccharide-activated macrophages. Most of the tested compounds were identified as potent $PPAR_\gamma$ agonists, indicating their potential as drug candidates for diabetes.

Inhibitory Effect of Berberine on TNF-$\alpha$-induced U937 Monocytic Cell Adhesion to HT29 Human Colon Epithelial Cells is Mediated through NF-$\kappa$B Rather than PPAR$\gamma$ (TNF-$\alpha$ 자극에 의한 U937 단핵구 세포의 HT29 대장 상피 세포 부착에 대한 Berberine의 PPAR$\gamma$가 아닌 NF-$\kappa$B 경로를 통한 억제 효과)

  • Park, Su-Young;Lee, Gwang-Ik;Kim, Il-Yeob;Kim, Jung-Ae
    • YAKHAK HOEJI
    • /
    • v.54 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • Berberine, an isoquinoline alkaloid, has a wide range of pharmacological effects, including anti-inflammation. It has been reported that berberine inhibits experimental colitis through inhibition of IL-8, and that inhibitory effect of berberine on inflammatory cytokine expression is mediated through peroxisome proliferator activated receptor (PPAR)-$\gamma$. In this study, we examined the effects and action mechanism of berberine on the tumor necrosis factor (TNF)-$\alpha$-induced monocyte adhesion to HT29 human colonic epithelial cells, which is commonly used as an in vitro model of inflammatory bowel disease (IBD). Berberine significantly inhibited the TNF-$\alpha$-induced monocyte adhesion to HT29, which is similar to the effect of PDTC, a nuclear factor (NF)-$\kappa$B inhibitor. However, ciglitazone and GW, the ligands of PPAR-$\gamma$, did not suppress the TNF-$\alpha$-induced monocyte adhesion to HT29 cells. In addition, TNF-$\alpha$-induced chemokine expression and NF-$\kappa$B transcriptional activity were significantly inhibited by berberine in a concentration-dependent manner. The results suggest that inhibitory effect of berberine on colitis is mediated through suppression of NF-$\kappa$B and NF-$\kappa$B-dependent chemokine expression.

Expression of peroxisome proliferator activated receptor gamma in the neuronal cells and modulation of their differentiation by PPAR gamma agonists

  • Hong, Jin-Tae
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2002.11a
    • /
    • pp.14-40
    • /
    • 2002
  • 15-Deoxy-${\Delta}^{12, 14}$-prostaglandin $J_2$ (15-deoxy-$PGJ_2$), a naturally occurring ligand activates the peroxisome proliferator-activated $receptor-{\gamma}(PPAR-{\gamma}$). Activation of $PPAR-{\gamma}$ has been found to induce cell differentiation such as adipose cell and macrophage. Here it was investigated whether 15-deoxy-$PGJ_2$ has neuronal cell differentiation and possible underlying molecular mechanisms. Dopaminergic differentiating PC 12 cells treated with 15-deoxy-$PGJ_2$ (0.2 to 1.6 ${\mu}M$) alone showed measurable neurite extension and expression of neurofilament, markers of cell differentiation. However much greater extent of neurite extension and expression of neurofilament was observed in the presence of NGF (50 ng/ml). In parallel with its increasing effect on the neurite extension and expression of neurofilament, 15-deoxy-$PGJ_2$ enhanced NGF-induced p38 MAP kinase expression and its phosphorylation in addition to the activation of transcription factor AP-1 in a dose dependent manner. Moreover, pretreatment of SD 203580, a specific inhibitor of p38 MAP kinase inhibited the promoting effect of 15-deoxy-$PGJ_2$(0.8 ${\mu}M$) on NGF-induced neurite extension. This inhibition correlated well with the ability of SB203580 to inhibit the enhancing effect of 15-deoxy-$PGJ_2$ on the expression of p38 MAP kinase and activation of AP-1, The promoting ability of 15-deoxy-$PGJ_2$ did not occur through $PPAR-{\gamma}$, as synthetic PPAR-${\gamma}$ agonist andantagonist did not change the neurite promoting effect of 15-deoxy-PGJ$_2$. In addition, contrast to other cells (embryonic midbrain and SK-N-MC cells), $PPAR-{\gamma}$ was not expressed in PC-12 cells. Other structure related prostaglandins, PGD$_2$ and $PGE_2$ acting via a cell surface G-protein-coupled receptor (GPCR) did not increase basal or NGF-induced neurite extension. Moreover, GPCR (EP and DP receptor) antagonists did not alter the promoting effect of f 5-deoxy-$PGJ_2$ on neurite extension and activation of p38 MAP kinase, suggesting that the promoting effect of 15-deoxy-$PGJ_2$ may not be mediated GPCR. These data demonstrate that activation of p38 MAP kinase in conjunction with AP-1 single pathway may be important in the promoting activity of 15-deoxy-$PGJ_2$ cells.

  • PDF

Relationship between Single Nucleotide Polymorphisms in the Peroxisome Proliferator-Activated Receptor Gamma Gene and Fatty Acid Composition in Korean Native Cattle

  • Lee, Jea-young;Ha, Jae-jung;Park, Yong-soo;Yi, Jun-koo;Lee, Seunguk;Mun, Seyoung;Han, Kyudong;Kim, J.-J.;Kim, Hyun-Ji;Oh, Dong-yep
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.184-194
    • /
    • 2016
  • The peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) gene plays an important role in the biosynthesis process controlled by a number of fatty acid transcription factors. This study investigates the relationships between 130 single-nucleotide polymorphisms (SNPs) in the $PPAR{\gamma}$ gene and the fatty acid composition of muscle fat in the commercial population of Korean native cattle. We identified 38 SNPs and verified relationships between 3 SNPs (g.1159-71208 A>G, g.42555-29812 G>A, and g.72362 G>T) and the fatty acid composition of commercial Korean native cattle (n = 513). Cattle with the AA genotype of g.1159-71208 A>G and the GG genotype of g.42555-29812 G>A and g.72362 G>T had higher levels of monounsaturated fatty acids and carcass traits (p<0.05). The results revealed that the 3 identified SNPs in the $PPAR{\gamma}$ gene affected fatty acid composition and carcass traits, suggesting that these 3 SNPs may improve the flavor and quality of beef in commercial Korean native cattle.

Inhibition of Adipogenesis in 3T3-L1 Adipocytes with Magnolia officinalis Extracts (후박 추출물의 지방세포 분화 억제 효능에 관한 연구)

  • Kim, Hyun-Ju;Lee, Yeo-Myeong;Kim, Yeon-Hyang;Won, Sun-Im;Choi, Sung-A;Choi, Shin-Wook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.2
    • /
    • pp.117-123
    • /
    • 2009
  • Magnolia extract, prepared from the Chinese herb Magnolia officinalis, is known for its potent anti-oxidative and anti-inflammatory effects. In this report, we showed that Magnolia extract inhibits adipocyte differentiation, as evidenced by reduced triglyceride (TG) accumulation. Also, Magnolia extract increased hormone sensitive lipase (HSL) protein level, and decreased the adipogenic transcription factor peroxisome proliferator activated receptor (PPAR)-${\gamma}$ protein and their corresponding mRNA. Our results suggest a potential apllication of Magnolia extract as anti-obesity agents inhibits adipocyte differentiation through the down-regulation of adipogenic transcription factors and other adipocyte-specific genes.

The Effects of Jwa Kum-Whan and Soo Ryeon-Whan on the Hyperlipidemia in Rats (좌금환(左金丸)과 수련환(茱連丸)이 고지혈증(高脂血症)에 미치는 영향)

  • Kim, Yi-Heon;Seong, Nak-Sul;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.20 no.2
    • /
    • pp.91-102
    • /
    • 2005
  • Objectives : By examining the effects of Jwa Kum-Whan composed of Coptidis Rhizoma and Evodiae Fructus by the ratio of 6:1 the effects of Soo Ryeon-Whan and composed of Coptidis Rhizoma and Evodiae Fructus by the ratio of 1:1 on hyperlipidemia, the present study attempted to reveal the change of effects based on the ratio of combination. Methods : Jwa Kum-Whan and Soo Ryeon-Whan were injected to rats suffered from induced hyperlipidemia, and then its influence on lipid. During the cultivation of hepatocytes, Jwa Kum-Whan and Soo Ryeon-Whan were added to culture media, and the expression of the enzymes relevant to fat metabolism of hepatocytes was examined. Results : 1. Jwa Kum-Whan significantly decreased total cholesterol(Tc), triglyceride(TG), and LDL-cholesterol(LDLc) of rats suffering from hyperlipidemia induced by high cholesterol diet. Soo Ryeon-Whan decreased LDLc, but had no significant on Tc and TG. 2. Jwa Kum-Whan increased the expression of cholesterol esterase, LDL-receptor, diacylglycerol acyltransferase (DGAT), acylCoA-cholesterol-acyltransferase (ACAT), peroxisome proliferator activated receptor gamma $(PPAR{\gamma})$, peroxisome proliferator activated receptor alpha $(PPAR{\alpha})$ of cultivated hepatocytes. In addition, Soo Ryeon-Whan increased the expression of cholesterol esterase, LDL-Receptor, DGAT, $PPAR{\gamma},\;PPAR{\alpha}$ of cultivated hepatocytes, but had no significant effects on the expression of ACAT. Conclusion : Both Jwa Kum-Whan and Soo Ryeon-Whan were composed of Coptidis Rhizoma and Evodiae Fructus, but the fonner is more effective in hyperlipidemia.

  • PDF

Expression of peroxisome proliferator activated receptor gamma in the neuronal cells and modulation of their differentiation by PPAR gamma agonists

  • Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.14-40
    • /
    • 2002
  • 15-Deoxy- Δ$\^$12,14/-prostaglandin J$_2$ (15-deoxy-PGJ$_2$), a naturally occurring ligand activates the peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$). Activation of PPAR-y has been found to induce cell differentiation such as adipose cell and macrophage. Here it was investigated whether 15-deoxy-PGJ$_2$ has neuronal cell differentiation and possible underlying molecular mechanisms. Dopaminergic differentiating PC 12 cells treated with 15-deoxy-PGJ$_2$ (0.2 to 1.6 ${\mu}$M) alone showed measurable neurite extension and expression of neurofilament, markers of cell differentiation. However much greater extent of neurite extension and expression of neurofilament was observed in the presence of NGF (50 ng/$m\ell$). In parallel with its increasing effect on the neurite extension and expression of neurofilament, 15-deoxy-PGJ$_2$ enhanced NGF-induced p38 MAP kinase expression and its phosphorylation in addition to the activation of transcription factor AP-1 in a dose dependent manner. Moreover, pretreatment of SD 203580, a specific inhibitor of p38 MAP kinase inhibited the promoting effect of 15-deoxy-PGJ$_2$ (0.8 ${\mu}$M) on NGF-induced neurite extension. This inhibition correlated well with the ability of SB203580 to inhibit the enhancing effect of 15-deoxy-PGJ$_2$ on the expression of p38 MAP kinase and activation of AP-1. The promoting ability of 15-deoxy-PGJ$_2$ did not occur through PPAR-${\gamma}$, as synthetic PPAR-${\gamma}$ agonist and antagonist did not change the neurite promoting effect of 15-deoxy-PGJ$_2$. In addition, contrast to other cells (embryonic midbrain and SK-N-MC cells), PPAR-${\gamma}$ was not expressed in PC-12 cells. Other structure related prostaglandins, PGD$_2$ and PGE$_2$ acting via a cell surface G-protein-coupled receptor (GPCR) did not increase basal or NGF-induced neurite extension. Moreover, GPCR (EP and DP receptor) antagonists did not alter the promoting effect of 15-deoxy-PGJ$_2$ on neurite extension and activation of p38 MAP kinase, suggesting that the promoting effect of 15-deoxy-PGJ$_2$ may not be mediated GPCR. These data demonstrate that activation of p38 MAP kinase in conjunction with AP-1 signal pathway may be important in the promoting activity of 15-deoxy-PGJ$_2$ on the differentiation of PC12 cells.

  • PDF