• Title/Summary/Keyword: Peroxisome proliferator-activated

Search Result 479, Processing Time 0.023 seconds

The Metabolic Effects of FGF21: From Physiology to Pharmacology (생리, 약학적 관점에서 fibroblast growth factor 21 (FGF21)의 대사 효과 고찰)

  • Song, Parkyong
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.640-650
    • /
    • 2020
  • Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF protein family which is highly synthesized in the liver, pancreas, and adipose tissue. Depending on the expression tissue, FGF21 uses endo- or paracrine features to regulate several metabolic pathways including glucose metabolism and energy homeostasis. Different physiologically stressful conditions such as starvation, a ketogenic diet, extreme cold, and mitochondrial dysfunction are known to induce FGF21 synthesis in various tissues to exert either adaptive or defensive mechanisms. More specifically, peroxisome proliferator-activated receptor gamma and peroxisome proliferator-activated receptor alpha control FGF21 expression in adipose tissue and liver, respectively. In addition, the pharmacologic administration of FGF21 has been reported to decrease the body weight and improve the insulin sensitivity and lipoprotein profiles of obese mice and type 2 diabetes patients meaning that FGF21 has attracted huge interest as a therapeutic agent for type 2 diabetes, obesity, and non-alcoholic fatty liver disease. However, understanding FGF21 remains complicated due to the paradoxical condition of its tissue-dependent expression. For example, nutrient deprivation largely increases hepatic FGF21 levels whereas adipose tissue-derived FGF21 is increased under feeding condition. This review discusses the issues of interest that have arisen from existing publications, including the tissue-specific function of FGF21 and its action mechanism. We also summarize the current stage of a clinical trial using several FGF21 analogs.

Effects of Peroxisome Proliferator-Activated $Receptor-{\gamma}2$ Pro12Ala Polymorphism on Body Fat Distribution in Female Korean Subjects (Peroxisome Proliferator-Activated $Receptor-{\gamma}$ 2 $(PPAR{\gamma}2)$ Pro12Ala (P12A) 유전자 다형성이 한국여성의 체지방분포에 미치는 영향)

  • Kim, Kil-Soo;Choi, Sun-Mi;Yang, Hyun-Sung;Yoon, Yoo-Sik;Shin, Seun-Uoo
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Objectives: The effects of peroxisome proliferator-activated receptor ${\gamma}2\;(PPAR{\gamma}2)$ Pro12Ala (P12A) polymorphism on body mass index (BMI) and type 2 diabetes are well documented; however, until now, only a few studies have evaluated the effects of this polymorphism on body fat distribution. This study was conducted to elucidate the effects of this polymorphism on computed tomography (CT)-measured body fat distribution and other obesity-related parameters in Korean female subjects. Methods & Results: The frequencies of $PPAR{\gamma}2$ genotypes were: PP type, 93.0%; PA type, 6.8%; and AA type, 0.2%. The frequency of the A allele was 0.035. Body weight (P .012), BMI (P .012), and waist-to-hip ratio (WHR) (P .001) were significantly higher in subjects with PA/AA compared with subjects with PP. When body composition was analyzed by bioimpedance analysis, lean body mass and body water content were similar between the 2 groups. However, body fat mass (P .003) and body fat percent (P .025) were significantly higher in subjects with PA/AA compared with subjects with PP. Among overweight subjects with BMI of greater than 25, PA/AA was associated with significantly higher abdominal subcutaneous fat (P .000), abdominal visceral fat (P .031), and subcutaneous upper and lower thigh adipose tissue (P .010 and .013). However, among lean subjects with BMI of less than 25, no significant differences associated with $PPAR{\gamma}2$ genotype were found, suggesting that the fat-accumulating effects of the PA/AA genotype were evident only among overweight subjects, but not among lean subjects. When serum lipid profiles, glucose, and liver function indicators were compared among overweight subjects, no significant difference associated with $PPAR{\gamma}2$ genotype was found. Changes in body weight, BMI, WHR, and body fat mass were measured among overweight subjects who finished a 1-month weight lose program of a hypocaloric diet and exercise; no significant differences associated with $PPAR{\gamma}2$ genotype were found. Conclusions: The results of this study suggest that the $PPAR{\gamma}2$ PA/AA genotype is associated with increased subcutaneous and visceral fat areas in overweight Korean female subjects, but does not significantly affect serum biochemical parameters and outcomes of weight loss programs.

  • PDF

Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells

  • Song, Heewon;Park, Joonwoo;Choi, KeunOh;Lee, Jeonggeun;Chen, Jie;Park, Hyun-Ju;Yu, Byeung-Il;Iida, Mitsuru;Rhyu, Mee-Ra;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.319-325
    • /
    • 2019
  • Background: Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$. Methods: The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the $PPAR{\gamma}$ structure using Surflex-Dock in Sybyl-X 2.1.1. Results: $PPAR{\gamma}$ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the $PPAR{\gamma}-specific$ inhibitor, T0070907. The $PPAR{\gamma}$ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of $PPAR{\gamma}$. Conclusions: Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on $PPAR{\gamma}$ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of $PPAR{\gamma}$ suggests that the compound binds to $PPAR{\gamma}$ in a position similar to that of known agonists.

Signal crosstalk between estrogen and peroxisome proliferator-activated receptor α on adiposity

  • Kim, Bang-Hyun;Won, Young-Suk;Kim, Dae-Yong;Kim, Bora;Kim, Eun-Young;Yoon, Mi-Jung;Oh, Goo-Taeg
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.91-95
    • /
    • 2009
  • Peroxisome proliferator-activated receptor $\alpha$ and estrogen are believed to be involved in metabolic changes leading to obesity. To test this relationship, we divided female wildtype and PPAR$\alpha$-deficient mice fed on a high fat diet into the following groups: mock-operated, ovariectomized (OVX), and $E_2$-treated. The visceral white adipose tissue and plasma cholesterol levels were increased significantly in wild type OVX and decreased in the $E_2$-treated group, but interestingly not in PPAR$\alpha$-deficient mice. The mRNA levels of lipoprotein lipase in adipose tissue were also increased in only wild type OVX and decreased significantly in $E_2$-treated mice. These novel results suggest the possibility of signaling crosstalk between PPAR$\alpha$ and $E_2$, causing obesity in vivo.

Peroxisome Proliferator-activated Receptor-γ Gene Polymorphisms are not associated with Osteonecrosis of the Femoral Head in the Korean Population

  • Kim, Tae-Ho;Hong, Jung Min;Park, Eui Kyun;Kim, Shin-Yoon
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.388-393
    • /
    • 2007
  • Osteonecrosis of the femoral head (ONFH) is a multifactorial disease to which certain individuals are more at risk. Altered lipid metabolism is one of the major risk factors for osteonecrosis, especially corticosteroid therapy and alcoholism. Peroxisome Proliferator-Activated Receptor-${\gamma}$ ($PPAR{\gamma}$) plays a crucial role in differentiation of mesenchymal cells to adipocytes, lipid homeostasis, and bone metabolism. To investigate the possible association between $PPAR{\gamma}$ gene variants and susceptibility to ONFH, we genotyped three common polymorphisms (-796A > G, +34C > G[Pro12Ala], and +82466C > T[His477His]) in 448 ONFH patients and 336 control subjects. Genotypes, allele frequencies, and haplotypes of the polymorphisms in the complete set of patients as well as in subgroups by sex or etiology were not significantly different from those in the control group. This suggests that the examined polymorphisms and haplotypes of the $PPAR{\gamma}$ gene are unlikely to be associated with susceptibility to ONFH.

Binding Model of Amentoflavone to Peroxisome Proliferator-Activated Receptor γ

  • Lee, Jee-Young;Kim, Jin-Kyoung;Lee, So-Jung;Lee, Eun-Jung;Shin, So-Young;Jin, Qinglong;Yoon, Do-Young;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1475-1479
    • /
    • 2012
  • Human peroxisome proliferator-activated receptor gamma ($hPPAR{\gamma}$) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. In this study, we verified that amentoflavone is an agonist of $hPPAR{\gamma}$ and probed the molecular basis of its action. It was demonstrated that amentoflavone bound $hPPAR{\gamma}$ with high (picomolar) affinity and increased the binding between $hPPAR{\gamma}$ and steroid receptor coactivator-1 (SRC-1) by approximately 4-fold. Based on a docking study, for the first time, we propose a model of amentoflavone and $hPPAR{\gamma}$ binding in which amentoflavone forms three hydrogen bonds with the side chains of His323, Tyr327, and Arg280 in $hPPAR{\gamma}$ and participates in two hydrophobic interactions.

Two Synthetic Ligands for Peroxisome Proliferator- Activated Receptor $\gamma$

  • Kim, Min-A;Jeong, Sun-Hyo;Song, Yang-Heon;Kim, Dae-Il;Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.137-142
    • /
    • 2004
  • The peroxisome proliferator-activated receptor $\gamma$ (PPAR${\gamma}$) is the molecular target for a class of drugs, the antidiabetic thiazolidnediones (TZDs). The heterodimer of PPAR${\gamma}$ with retinoid X receptor (RXR) plays a central role in the regulation of adipogenesis and insulin sensitization. We synthesized two chemicals, DANA87 and DANA88, sharing structural characteristics with TZDs. Given this structural similarity, it was hypothesized that DANA87 and DANA88 may act as PPAR$\gamma$ ligands. In transient transfection assays, DANA87 and DANA88 caused slight increases in the endogenous expression of a luciferase reporter gene containing the PPAR responsive element in 3T3-L1 preadipocytes. However, DANA87 and DANA88 significantly inhibited troglitazone-induced reporter gene activation when cells were treated with a combination of DANA87 or DANA 88 and troglitazone, one of the TZDs that activate PPAR$\gamma$. These results suggest that DANA87 and DANA88 are not only weak agonists of PPAR${\gamma}$ transactivation, but also competitively antagonize troglitazone-induced PPAR$\gamma$ reporter activity.

  • PDF

Effects of Fenofibrate on Adipogenesis in Female C57BL/6J Mice

  • Jeong Sunhyo;Choi Won Chang;Yoon Michung
    • Biomedical Science Letters
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Fibrates are a class of hypolipidemic agents whose effects are mediated by activation of a specific transcription factor called the peroxisome proliferator-activated receptor $\alpha\;(PPAR\alpha).\;PPAR\alpha$ regulates the pathways of lipid catabolism such as fatty acid oxidation and the triglyceride metabolism, resulting in the treatment of hyperlipidemia. The decreased levels of plasma triglycerides by fibrates are responsible for hypertrophy and hyperpalsia of adipose cells. To determine whether fenofibrate regulates adipogenesis in female C57BL/6J mice, we measured the effects of fenofibrate on not only body weight, adipose tissue mass and serum triglycerides, but also the histology of adipose tissue and the expression of adipocyte marker genes. Fenofibrate did not inhibit high fat diet-induced increases in body weight, adipose tissue mass and serum triglycerides. Furthermore, fenofibrate did not cause the changes in the size and number of adipocytes and the expression of adipocyte-specific genes such as leptin and $TNF\alpha$. Therefore, this study demonstrates that fenofibrate does not affect adipogenesis in female mice.

  • PDF

PPARγ Physiology and Pathology in Gastrointestinal Epithelial Cells

  • Thompson, E. Aubrey
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.167-176
    • /
    • 2007
  • Peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) is expressed at very high levels in the gastrointestinal epithelium. Many of the functions of $PPAR{\gamma}$ in gastrointestinal epithelial cells have been elucidated in recent years, and a pattern is emerging which suggests that this receptor plays an important role in gastrointestinal physiology. There is also strong evidence that $PPAR{\gamma}$ is a colon cancer suppressor in pre-clinical rodent models of sporadic colon cancer, and there is considerable interest in exploitation of $PPAR{\gamma}$ agonists as prophylactic or chemopreventive agents in colon cancer. Studies in mice and in human colon cancer cell lines suggest several mechanisms that might account for the tumor suppressive effects of $PPAR{\gamma}$ agonists, although it is not in all cases clear whether these effects are altogether mediated by $PPAR{\gamma}$. Conversely, several reports suggest that $PPAR{\gamma}$ agonists may promote colon cancer under certain circumstances. This possibility warrants considerable attention since several million individuals with type II diabetes are currently taking $PPAR{\gamma}$ agonists. This review will focus on recent data related to four critical questions: what is the physiological function of $PPAR{\gamma}$ in gastrointestinal epithelial cells; how does $PPAR{\gamma}$ suppress colon carcinogenesis; is $PPAR{\gamma}$ a tumor promoter; and what is the future of $PPAR{\gamma}$ in colon cancer prevention?

Peroxisome proliferator-activated receptor γ is essential for secretion of ANP induced by prostaglandin D2 in the beating rat atrium

  • Zhang, Ying;Li, Xiang;Liu, Li-Ping;Hong, Lan;Liu, Xia;Zhang, Bo;Wu, Cheng-Zhe;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.293-300
    • /
    • 2017
  • Prostaglandin $D_2$ ($PGD_2$) may act against myocardial ischemia-reperfusion (I/R) injury and play an anti-inflammatory role in the heart. Although the effect of $PGD_2$ in regulation of ANP secretion of the atrium was reported, the mechanisms involved are not clearly identified. The aim of the present study was to investigate whether $PGD_2$ can regulate ANP secretion in the isolated perfused beating rat atrium, and its underlying mechanisms. $PGD_2$ (0.1 to $10{\mu}M$) significantly increased atrial ANP secretion concomitantly with positive inotropy in a dose-dependent manner. Effects of $PGD_2$ on atrial ANP secretion and mechanical dynamics were abolished by AH-6809 ($1.0{\mu}M$) and AL-8810 ($1.0{\mu}M$), $PGD_2$ and prostaglandin $F2{\alpha}$ ($PGF2{\alpha}$) receptor antagonists, respectively. Moreover, $PGD_2$ clearly upregulated atrial peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and the $PGD_2$ metabolite 15-deoxy-${\Delta}12$, 14-$PGJ_2$ (15d-$PGJ_2$, $0.1{\mu}M$) dramatically increased atrial ANP secretion. Increased ANP secretions induced by $PGD_2$ and 15d-$PGJ_2$ were completely blocked by the $PPAR{\gamma}$ antagonist GW9662 ($0.1{\mu}M$). PD98059 ($10.0{\mu}M$) and LY294002 ($1.0{\mu}M$), antagonists of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling, respectively, significantly attenuated the increase of atrial ANP secretion by $PGD_2$. These results indicated that $PGD_2$ stimulated atrial ANP secretion and promoted positive inotropy by activating $PPAR{\gamma}$ in beating rat atria. MAPK/ERK and PI3K/Akt signaling pathways were each partially involved in regulating $PGD_2$-induced atrial ANP secretion.