• Title/Summary/Keyword: Perovskite phase

Search Result 526, Processing Time 0.032 seconds

Detection of Volatile Organic Compounds (VOCs) using Organic-Inorganic Hybrid Perovskite Nanoparticles (유무기 페로브스카이트 나노입자의 휘발성 유기화합물 감응특성)

  • Choi, Hansol;Choi, Jihoon
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.515-521
    • /
    • 2020
  • Organic-inorganic hybrid perovskite nanocrystals have attracted a lot of attention owing to their excellent optical properties such as high absorption coefficient, high diffusion length, and photoluminescence quantum yield in optoelectronic applications. Despite the many advantages of optoelectronic materials, understanding on how these materials interact with their environments is still lacking. In this study, the fluorescence properties of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanoparticles are investigated for the detection of volatile organic compounds (VOCs) and aliphatic amines (monoethylamine, diethylamine, and trimethylamine). In particular, colloidal MAPbBr3 nanoparticles demonstrate a high selectivity in response to diethylamine, in which a significant photoluminescence (PL) quenching (~ 100 %) is observed at a concentration of 100 ppm. This selectivity to the aliphatic amines may originate from the relative size of the amine molecules that must be accommodated in the perovskite crystals structure with a narrow range of tolerance factor. Sensitive PL response of MAPbBr3 nanocrystals suggests a simple and effective strategy for colorimetric and fluorescence sensing of aliphatic amines in organic solution phase.

Phase Formation and Electrical Conductivity of Ba-Doped LaBaGaO4 Layered Perovskite (Ba 첨가 LaBaGaO4 층상 Perovskite의 생성상과 전기전도도)

  • Lee, Kyu-Hyoung;Kim, Jong-Hwa;Kim, Hye-Lim;Kim, Shin;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.623-627
    • /
    • 2004
  • Phase formation and electrical conduction behavior of Ba-doped LaBaGa $O_4$ layered perovskite were studied. Orthorhombic single phase of $K_2$Ni $F_4$-type structure was observed for the composition range of 0$\leq$x$\leq$0.2 in the La$\_$1+x/Ba$\_$1+x/Ga $O_4$$\_$4-$\delta$/ system by X-ray analysis. In the dry atmosphere, La$\_$0.8/Ba$\_$1.2/Ga$\_$3.9/ exhibited mixed conduction of oxygen ion and hole (p-type) at high p( $O_2$). However, in water vapor containing atmosphere, it showed proton conduction due to the incorporation of water into oxygen vacancies. As the temperature decreased, the contribution of proton conductivity to the total conduction increased and proton conduction was dominant below 350$^{\circ}C$. The activation energy for proton conduction was calculated as 0.72 eV.

Influence of Crystal Structure on the Chemical Bonding Nature and Photocatalytic Activity of Hexagonal and Cubic Perovskite Compounds

  • Lee, Sun-Hee;Kim, In-Young;Kim, Tae-Woo;Hwang, Seong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.817-821
    • /
    • 2008
  • We have investigated the influence of the crystal structure on the chemical bonding nature and photocatalytic activity of cubic and hexagonal perovskite A[$Cr_{1/2}Ta_{1/2}$]O3 (A = Sr, Ba) compounds. According to neutron diffraction and field emission-scanning electron microscopy, the crystal structure and particle size of these compounds are strongly dependent on the nature of A-site cations. Also, it was found that the face-shared octahedra in the hexagonal phase are exclusively occupied by chromium ions, suggesting the presence of metallic (Cr-Cr) bonds. X-ray absorption and diffuse UV-vis spectroscopic analyses clearly demonstrated that, in comparison with cubic Sr[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase, hexagonal Ba[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase shows a decrease of Cr oxidation state as well as remarkable changes in interband Cr d-d transitions, which can be interpreted as a result of metallic (Cr-Cr) interactions. According to the test of photocatalytic activity, the present semiconducting materials have a distinct activity against the photodegradation of 4-chlorophenol. Also the Srbased compound was found to show a higher photocatalytic activity than the Ba-based one, which is attributable to its smaller particle size and its stronger absorption in visible light region.

Processing, structure, and properties of lead-free piezoelectric NBT-BT

  • Mhin, Sungwook;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.160-165
    • /
    • 2015
  • Lead-free piezoelectric materials have been actively studied to substitute for conventional PZT based solid solution, $Pb(Zr_xTi_{1-x}O_3)$, which occurs unavoidable PbO during the sintering process. Among them, Bismuth Sodium Titanate, $Na_{0.5}Bi_{0.5}TiO_3$ (abbreviated as NBT) based solid solution is attracted for the one of excellent candidates which shows the strong ferroelectricity, Curie temperature (Tc), remnant polarization (Pr) and coercive field (Ec). Especially, the solid solution of rhombohedral phase NBT with tetragonal perovskite phase has a rhombohedral - tetragonal morphotropic phase boundary. Modified NBT with tetragonal perovskite at the region of MPB can be applied for high frequency ultrasonic application because of not only its low permittivity, high electrocoupling factor and high mechanical strength, but also effective piezoelectric activity by poling. In this study, solid state ceramic processing of NBT and modified NBT, $(Na_{0.5}Bi_{0.5})_{0.93}Ba_{0.7}TiO_3$ (abbreviated as NBT-7BT), at the region of MPB using 7 % $BaTiO_3$ as a tetragonal perovskite was introduced and the structure between NBT and NBT-7BT were analyzed using rietveld refinement. Also, the ferroelectric and piezoelectric properties of NBT-7BT such as permittivity, piezoelectric constant, polarization hysteresis and strain hysteresis loop were compared with those of pure NBT.

Dielectric Properties of Cation-deficient Perovskite Ceramics and Oscillator Application (Cation-deficient 페로브스카이트 세라믹스의 유전 특성과 발진기 응용)

  • Kim, Jae-Sik;Choi, Eui-Sun;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.18-19
    • /
    • 2006
  • In this study, dielectric properties of the ${Mg_5}{B_4}{O_{15}}$ (B=Ta, Nb) cation-deficient perovskite ceramics and its oscillator application are investigated. The cation-deficient perovskite ceramics are prepared through the solid-state route. According to the XRD pattern, ${Mg_4}{Ta_2}{O_9}$ and $Mg{Ta_2}{O_6}$ phase existed in calcined and sintered ${Mg_5}{Ta_4}{O_15}$ powder. Also ${Mg_5}{Ta_4}{O_{15}}$ phase added with increasing sintering temperature. In the case of calcined and sintered ${Mg_5}{Nb_4}{O_{15}}$ powder, single phase of ${Mg_5}{Nb_4}{O_{15}}$ is appeared. In the case of the ${Mg_5}{Ta_4}{O_{15}}$ and ${Mg_5}{Nb_4}{O_{15}}$ ceramics sintered at $1450^{\circ}C$ for 5h, the dielectric constant, quality factor, and temperature coefficient of the resonant frequency (TCRF) were 8.2, 259,473 GHz, $-10.91ppm/^{\circ}C$ and 14, 37,350 GHz, $-52.3\;ppm/^{\circ}C$, respectively. Simulated DR with ${Mg_5}{Ta_4}{O_{15}}$ ceramics had the operating frequency of 10.99 GHz and S(2,1) of -29.795 dB. Size of manufactured oscillator was $56{\times}48{\times}34\;mm^3 and operated at 11.93 GHz. Power output and second harmonic of oscillator were +13.61 dBm and -23.81 dBc at 23.85 GHz, respectively.

  • PDF

Preparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics

  • Fan, Huiqing;Peng, Biaolin;Zhang, Qi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • (111)-oriented and random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) perovskite relaxor ferroelectric thin films were fabricated on Pt(111)/$TiO_x$/$SiO_2$/Si substrate by sol-gel method. Nano-scaled antiferroelectric and ferroelectric two-phase coexisted in both (111)-oriented and random oriented PBZ thin film. High dielectric tunability (${\eta}=75%$, E = 560 kV/cm) and figure-of-merit (FOM ~ 236) at room temperature was obtained in (111)-oriented thin film. Meanwhile, giant electrocaloric effect (ECE) (${\Delta}T=45.3K$ and ${\Delta}S=46.9JK^{-1}kg^{-1}$ at $598kVcm^{-1}$) at room temperature (290 K), rather than at its Curie temperature (408 K), was observed in random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) thin film, which makes it a promising material for the application to cooling systems near room temperature. The giant ECE as well as high dielectric tunability are attributed to the coexistence of AFE and FE phases and field-induced nano-scaled AFE to FE phase transition.

Preparation of Ferroelectric PZT Thin Film by Sol-Gel Processing; (II) Effect of Catalysts on Densification and Crystallization (솔-젤법에 의한 강유전성 PZT 박막의 제조;(II) 치밀화 및 결정화에 미치는 촉매의 영향)

  • 김병호;박성호;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.783-792
    • /
    • 1995
  • Sol-Gel derived ferroelectric PZT thin films were fabricated on ITO/Glass and Si/SiO2 substrates. In order to investigate the effect of catalysts on the densification and crystallization of PZT thin films, a nitric acid or ammonium hydroxide was added to the PZT stock solution at the state of partial hydrolysis reaction. The measured pH for a stable PZT sol was 5.2~9.3. In case of an acid-catalyzed PZT sol, a highly condensed particulate PZT sol was formed by accelerating the hydrolysis reaction. But weakly branched polymeric PZT sol was formed with a base-catalyzed condition. The difference in densification behavior was not found in the pH range of added catalyst, but the refractive index of PZT thin film was increased rapidly as the annealing temperature increased. The PZT thin film annealed at 54$0^{\circ}C$ for 10 min was fully densified and its refractive index was above 2.4. When the annealing temperature increased, the transition from the pyrochlore phase to perovskite appeared at 54$0^{\circ}C$. The base-catalyzed PZT thin film suppressed to form the pyrochlore phase and proceeded effectively to convert the perovskite phase. This was due to the formation of polymeric molecular structure by controlling the hydrolysis and condensation reaction through the additiion of the ammonium hydroxide.

  • PDF

Crystal Structure and Morphology of Nitride Precipitates in TiAl (TiAl에 석출한 질화물의 결정구조와 형태)

  • Han, Chang-Suk;Koo, Kyung-Wan
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • The crystal structures and morphologies of precipitates in $L1_0$-ordered TiAl intermetallics containing nitrogen were investigated by transmission electron microscopy (TEM). Under aging at an approximate temperature of 1073 K after quenching from 1423 K, TiAl hardens appreciably due to the nitride precipitation. TEM observations revealed that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the $L1_0$-TiAl matrix, appear in the matrix preferentially at the dislocations. Selected area electron diffraction (SAED) pattern analyses showed that the needle-shaped precipitate is perovskite-type $Ti_3AlN$ (P-phase). The orientation relationship between the P-phase and the $L1_0$-TiAl matrix was found to be $(001)_P//(001)_{TiAl}\;and\;[010]_P//[010]_{TiAl}$. By aging at higher temperatures or for longer periods at 1073 K, plate-like precipitates of $Ti_2AlN$ (H-phase) with a hexagonal structure formed on the {111} planes of the $L1_0$-TiAl matrix. The orientation relationship between the $Ti_2AlN$ and the $L1_0$-TiAl matrix is $(0001)_H//(111)_{TiAl}\;and\;_H//_{TiAl}$.

Catalytic Combustion of Benzene over Perovskite-type Oxides Prepared Using Malic Acid Method (능금산법으로 제조된 페롭스카이트형 산화물에서 벤젠의 촉매연소반응)

  • Jung, Won-Young;Hong, Seong-Soo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.259-264
    • /
    • 2012
  • Perovskite-type oxides were successfully prepared using malic acid method, characterized by TG/DTA, XRD, XPS, TEM and $H_2$-TPR and their catalytic activities for the combustion of benzene were determined. Almost of catalyst showed perovskite crystalline phase and 15-70 nm particle size. The $LaMnO_3$ catalysts showed the highest activity and the conversion reaches almost 100% at $350^{\circ}C$. The catalysts were modified to enhance the activity through substitution of metal into the A or B site of the perovskite oxides. In the $LaMnO_3$-type catalyst, the partial substitution of Sr into site the A-site enhanced the catalytic activity in the benzene combustion. In addition, the partial substitution of Co or Cu into site the B-site also enhanced the catalytic activity and the catalytic activity was in the order of Co > Cu > Fe in the $LaMn_{1-x}B_xO_3$ (B = Co, Fe, Cu) type catalyst.

Dielectric and conductivity properties of defect double Perovskite La1/3TaO3 single crystal (결함 이중 Perovskite La1/3TaO3 단결정의 유전 및 전도특성)

  • Sohn, Jeong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.215-219
    • /
    • 2020
  • After the specimen of A-site defect double Perovskite La1/3TaO3 single crystal was manufactured, the dielectric properties have been studied between the temperature range of 10 and 800 K. Under 500 K, a paraelectric behavior has been shown, and above 550 K, a dielectric anomaly and a thermal history of dielectric constant has been shown. An activation energy by measurement of ac-conductivity has been the largest with 1.83 eV in the areas below 560 K, 0.35 eV in the areas of 560~690 K, and 0.28 eV in the areas of high temperature above 690 K. From these results, it is assumed that in the areas below 500 K, La3+-ion and vacancy-site are arranged in disorder to maintain a paraelectric phase. And in the areas near 560 K with the highest activation energy, a dielectric anomaly is attributes to rearrangement of La3+-ion due to conduction to vacancy-site or jumping.