• Title/Summary/Keyword: Perovskite oxide

Search Result 254, Processing Time 0.034 seconds

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • Ryu, Ji-Seung;No, Tae-Min;Kim, Jin-Seong;Jeong, Cheol-Won;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF

Crystal Structure and Dielectric Responses of Pulsed Laser Deposited (Ba, Sr)$TiO_3$ Thin Films with Perovskite $LaNiO_3$ Metallic Oxide Electrode

  • Lee, Su-Jae;Kang, Kwang-Yong;Jung, Sang-Don;Kim, Jin-Woo;Han, Seok-Kil
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.258-261
    • /
    • 2000
  • Highly (h00)-oriented (Ba, Sr)TiO$_3$(BST) thin films were grown by pulsed laser deposition on the perovskite LaNiO$_3$(LNO) metallic oxide layer as a bottom electrode. The LNO films were deposited on SiO$_2$/Si substrates by rf-magnetron sputtering method. The crystalline phases of the BST film were characterized by x-ray $\theta$-2$\theta$, $\omega$-rocking curve and $\psi$-scan diffraction measurements. The surface microsturcture observed by scanning electron microscopy was very dense and smooth. The low-frequency dielectric responses of the BST films grown at various substrate temperatures were measured as a function of frequency in the frequency range from 0.1 Hz to 10 MHz. The BST films have the dielectric constant of 265 at 1 kHz and showed multiple dielectric relaxation at the low frequency region. The origin of these low-frequency dielectric relaxation are attributed to the ionized space charge carriers such as the oxygen vacancies and defects in BST film, the interfacial polarization in the grain boundary region and the electrode polarization. We studied also on the capacitance-voltage characteristics of BST films.

  • PDF

In-situ spectroscopic studies of SOFC cathode materials

  • Ju, Jong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

The Microwave Dielectric Properties of (1-x)Ba$Mg_{1/3}Ta_{2/3}O_{3}-xBa_Co_{1/3}Nb_{2/3})O_{3}(x=0.25~0.5)$ Ceramics ((1-X)Ba$Mg_{1/3}Ta_{2/3}O_{3}-xBa_Co_{1/3}Nb_{2/3})O_{3}(x=0.25~0.5)$세라믹스의 마이크로파 유전특성)

  • Hwang, Tae-Kwang;Kim, Kang;Lim, Sung-Soo;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.221-224
    • /
    • 2000
  • The microwave dielectric properties of Ba(Mg$_{1}$3/Ta$_{2}$3/)O$_3$-xBa(Co$_{1}$3/Nb$_{2}$3/)O$_3$[BMT-BCN] ceramics were investigated. The specimens were prepared by the conventional mixed oxide method. It was found that Ba(Mg$_{1}$3/Ta$_{2}$3/)O$_3$ and Ba(Co$_{1}$3/Nb$_{2}$3/)O$_3$ formed a solid solution with complex perovskite structure. Increasing the BCN content, dielectric constant was increased, but temperature coefficient of resonant frequency was decreased. In the range of x$\geq$0.4, dielectric constant was about 30. 0.55BMT-0.45BCN ceramics showed excellent microwave dielectric properties with $\varepsilon$$_{r}$=30.84, Q$\times$f$_{0}$=75,325[GHz] and $\tau$$_{f}$=-2.9015[ppm/$^{\circ}C$].X>].

  • PDF

H2S tolerance effects of Ce0.8Sm0.2O2-δ modification on Sr0.92Y0.08Ti1-xNixO3-δ anode in solid oxide fuel cells

  • Kim, Kab In;Kim, Hee Su;Kim, Hyung Soon;Yun, Jeong Woo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.187-195
    • /
    • 2018
  • $Sr_{0.92}Y_{0.08}Ti_{1-x}Ni_xO_{3-{\delta}}$ (SYTN) was investigated in the presence of $H_2S$ containing fuels to assess the feasibility of employing oxide materials as alternative anodes. Aliovalent substitution of $Ni^{2+}$ into $Ti^{4+}$ increased the ionic conductivity of perovskite, leading to improved electrochemical performance of the SYTN anode. The maximum power densities were 32.4 and $45.3mW/cm^2$ in $H_2$ at $900^{\circ}C$ for the SYT anode and the SYTN anode, respectively. However, the maximum power densities in 300 ppm of $H_2S$ decreased by 7% and by 46% in the SYT and the SYTN anodes, respectively. To enhance the sulfur tolerance and to improve the electrochemical properties, the surface of SYTN anode was modified with samarium doped ceria (SDC) using the sol-gel coating method. For the SDC-modified SYTN anode, the cell performance was mostly recovered in the pure $H_2$ condition after 500-ppm $H_2S$ exposure in contrast to the irreversible cell performance degradation exhibited in the unmodified SYTN anode.

Electrocatalytic Performances of La0.6Ca0.4CoO3 and Pb2Ru2O6 prepared by Amorphous Citrate Precursor Method (Amorphous Citrate Precursor 법으로 제조한 La0.6Ca0.4CoO3와 Pb2Ru2O6의 전기화학적 촉매능)

  • Lee, Churl Kyoung;Sohn, Hun-Joon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • The transition metal oxides have been of interest as bifunctional electrocatalysts for bifunctional air electrodes. The amorphous citrate precursor (ACP) process has been optimized to prepare perovskite (La0.6Ca0.4CoO3) and pyrochlore (Pb2Ru2O6) powders with high surface area, and consequent improvement of The electrocatalytic performance in an air electrode with thermal treatment. PTFE -bonded gas diffusion electrodes loaded with perovskitc and pyrochlore catalysts showed good bifunctional performances. The electrodes were fairly stable up to 100 hour in the galvanostatic mode at ${\pm}25mA/cm^2$, from which these electrodes offer promise as practical bifunctional air electrodes.

  • PDF

Preparation and Oxygen Permeability of $PrBa_{0.9}Sr_{0.1}Co_2O_{5+{\delta}}$ Ceramic Membrane ($PrBa_{0.9}Sr_{0.1}Co_2O_{5+{\delta}}$ 세라믹 분리막의 제조 및 산소투과 특성)

  • Pyo, Dae-Woong;Kim, Jong-Pyo;Son, Su-Hwan;Park, Jung-Hoon
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.321-328
    • /
    • 2011
  • $PrBa_{0.9}Sr_{0.1}Co_2O_{5+{\delta}}$ oxide was synthesized by soild state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1250^{\circ}C$. XRD result of membrane showed double perovskite structure. Leakage and oxygen permeation test were conducted on the membrane sealed by pyrex ring as a sealing material. Oxygen permeation was measured in the temperature range from 850 to $950^{\circ}C$. The oxygen flux of $PrBa_{0.9}Sr_{0.1}Co_2O_{5+{\delta}}$ membrane was increased with the temperature from 0.15 to $0.32mL/cm^2{\cdot}min$.

Microwave Dielectric Properties of $Ba(Mg_{1/3}Ta_{2/3})O_3$[BMT] Ceramics with Ca1cining Condition (하소조건에 따른 $Ba(Mg_{1/3}Ta_{2/3})O_3$[BMT] 세라믹스의 마이크로파 유전특성)

  • Hwang, Tae-Kwang;Lim, Sung-Soo;Chung, Jang-Ho;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.84-87
    • /
    • 2000
  • The microwave dielectric properties of complex perovskite-structured $Ba(Mg_{1/3}Ta_{2/3})O_3$ ceramics were investigated with calcining condition. The BMT ceramics were prepared by conventional mixed oxide method. Calcining conditions were $1200^{\circ}C$ for 10hr., $1300^{\circ}C$ for 2hr., and 5hr., respectively. And the specimens were sintered at $1650{\mu}m$. The structural and microwave properties of BMT ceramics were investigated by XRD, SEM and network analyzer. In the case of BMT ceramics calcined at $1300^{\circ}C$ for 5 hr., dielectric constant, quality factor and temperature coefficient of resonant frequency were 20.26, 31,144(at 1GHz), 6.11[ppm/$^{\circ}C$], respectively.

  • PDF

Microwave Dielectric Properties of the $MgTiO_3-SrTiO_3$ Ceramics ($MgTiO_3-SrTiO_3$ 세라믹스의 마이크로파 유전특성)

  • 배경인;이상철;최의선;배선기;이영희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.8
    • /
    • pp.376-381
    • /
    • 2001
  • The(1-x) MgTiO$_3$-xSrTiO$_3$(x=0.03~0.04) ceramics were fabricated by the conventional mixed oxide method. The structural and microwave dielectric properties were investigated by XRD, SEM, EDS and network analyzer. The sintering temperature and time were 1275$^{\circ}C$~135$0^{\circ}C$ and 2hours, respectively. In the XRD results of 0.96MgTiO$_3$-0.04SrTiO$_3$ceramics, the perovskite structure of SrTiO$_3$and ilmenite structure of MgTiO$_3$phase were coexisted. The dielectric constant($\varepsilon$(sub)${\gamma}$) and temperature coefficient of resonant frequency($\tau$(sub)f) were increased with addition of SrTiO$_3$. In thie case of 0.96MgTiO$_3$-0.04SrTiO$_3$ ceramics sintered at 13$25^{\circ}C$, the dielectric constant, quality factor(Q) and temperature coefficient of resonant frequency($\tau$(sub)f) were 20.13, 7956(at 7.27GHz), and +1.76ppm/$^{\circ}C$, respectively.

  • PDF

Study of Pr0.3Sr0.7CoxMn(1-x)O3 as the Cathode Materials for Intermediate Temperature SOFC (중.저온형 고체 산화물 연료전지의 공기극 물질로 사용되는 Pr0.3Sr0.7CoxMn(1-x)O3 (x=0, 0.3, 0.5, 0.7, 1)에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Bae, Joong-Myeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.214-218
    • /
    • 2007
  • The decrease of polarization resistance in cathode is the key point for operating at intermediate temperature SOFC (solid oxide fuel cell). In this study, the influence of Co substitution in B-site at complex perovskite on the electronic conductivity of PSCM ($Pr_{0.3}Sr_{0.7}Co_xMn_{(1-x)}$) was investigated. The PSCM series exhibits excellent MIEC (mixed ionic electronic conductor) properties. The ASR (area specific resistance) of PSCM3773 was $0.174{\Omega}{\cdot}cm^2\;at\;700^{\circ}C$. The activation energy of PSCM3773 was also lower than other compositions of PSCM. The TEC(thermal expansion coefficient) was decreased by addition of Mn. The ASR values were increased gradually during the thermal cycling test of PSCM37773 due to the delamination between electrolyte and cathode materials. The delamination was caused by the difference of TEC.