• Title/Summary/Keyword: Permeation flux

Search Result 262, Processing Time 0.024 seconds

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S.;Zhang, G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.212-219
    • /
    • 2018
  • Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.

In Vitro Percutaneous Absorption of Ondansetron Hydrochloride from Pressure-sensitive Adhesive Matrices through Hairless Mouse Skin

  • Gwak, Hye-Sun;Oh, Ik-Sang;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.644-648
    • /
    • 2003
  • To investigate the feasibility of developing a new ondansetron transdermal system, the effects of vehicles and penetration enhancers on the in vitro permeation of ondansetron hydrochloride (OS) from a pressure-sensitive adhesive (PSA) matrices across dorsal hairless mouse skin were studied. Vehicles employed in this study consisted of various ratios of propylene glycol monocaprylate (PGMC)-diethylene glycol monoethyl ether (DGME) co-solvents and PGMC-propylene glycol (PG) co-solvents with 3% oleic acid. $Duro-Tak^\circledR$ 87-2100 and $Duro-Tak^\circledR$ 87-2196 were used as PSAs. The concentration of DGME in PGMC-DGME co-solvent system affected the release rate; as the concentration of DGME increased, the release rate decreased. The cumulative release amount of OS increased as the ratio of PSA to drug solution decreased. The permeation flux was also primarily affected by the amount of PSAs; as the amount decreased, the permeation flux increased. The overall fluxes from matrix formulations were significantly lower when compared to those obtained from solution formulations. The ratio of PG to PGMC did not affect permeation flux, while the lag time decreased significantly from $5.14\pm3.31 to 0.31\pm0.12$ h as the PG increased from 40% to 60%.

Enhanced Ex Vivo Buccal Transport of Propranolol: Evaluation of Phospholipids as Permeation Enhancers

  • Lee, Jae-Hwi;Choi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • v.26 no.5
    • /
    • pp.421-425
    • /
    • 2003
  • The aim of the present study was to evaluate the effects of two phospholipid permeation enhancers, lysophosphatidylcholine (LPC) and didecanoylphosphatidylcholine (DDPC), along with a fusidic acid derivative, sodium taurodihydrofusidate (STDHF) and ethanol (EtOH) on the buccal transport of propranolol hydrochloride (PPL) using an ex vivo buccal diffusion model. The permeation rate of [$^3 H$]PPL as measured by steady-state fluxes increased with increasing EtOH concentration. A significant flux enhancement (P<0.05) was achieved by EtOH at 20 and 30 %v/v concentrations. At a 0.5 %w/v permeation enhancer concentration, the buccal permeation of [$^3 H$]PPL was significantly enhanced by all the enhancers studied (i.e., LPC, DDPC and STDHF) compared to the control (phosphate-buffered saline pH 7.4, PBS). LPC and DDPC displayed a greater degree of permeation enhancement compared with STDHF and EtOH-PBS mixtures with an enhancement ratio of 3.2 and 2.9 for LPC and DDPC, respectively compared with 2.0 and 1.5 for STDHF and EtOH:PBS 30:70 %v/v mixture, respectively. There was no significant difference between LPC and DDPC for the flux values and apparent permeability coefficients of [$^3$H]PPL. These results suggest that phospholipids are suitable as permeation enhancers for the buccal delivery of drugs.

Comparison of Pervaporation and Vapor Permeation Separation Processes for MTBE-methanol System

  • Kim, Youn-Kook;Lee, Keun-Bok;Rhim, Ji-Won
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.36-47
    • /
    • 2000
  • This paper deals with the separation of MTBE-methanol mixtures using crosslinked Poly(vinyl alcohol)(PVA) membranes with sulfur-succinic acid(SSA) as a crosslinking agent by pervaporation and vapor permeation technique. The operating temperatures, methanol concentration in feed mixtures, and SSA concentrations in PVA membranes were varied to investigate the separation performance of PVA/SSA membranes and the optimum separation characteristics by pervaporation and vapor permeation. And also, for PVA/SSA membranes, the swelling measurements were carried out to study the transport phenomena. The swelling measurements were carried out for pure MTBE and methanol, and MTBE/methanol=90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. There are two factors of the membrane network and the hydrogen bonding. In pervaporation separation was also carried out for MTBE/methanol=90/10, 80/20 mixtures at various temperatures. The sulfuric acid group in SSA took an important role in the membrane performance. The crosslinking effect might be over the hydrogen bonding effect due to the sulfuric acid group at 3 and 5% SSA membranes, and this two factors act vice versa on 7% SSA membrane. In this case, the 5% SSA membrane shows the highest separation factor of 2,095 with the flux of 12.79g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$ which this mixtures show near the azeotopic composition. Compared to pervaporation, vapor permeation showed less flux and similar separation factor. In this case, the flux decreased significantly because of compact structure and the effect of hydrogen bonding. In vapor permeation, density or concentration of methanol in vaporous feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membranes shows the highest separation factor of 2,187 with the flux of 4.84g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$.

  • PDF

Comparison of Pervaporation and Vapor Permeation Separation Processes for MTBE-methanol System

  • 김연국;이근복;임지원
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.36-36
    • /
    • 1992
  • This paper deals with the separation of MTBE-methanol mixtures using crosslinked Poly(vinyl alcohol)(PVA) membranes with sulfur-succinic acid(SSA) as a crosslinking agent by pervaporation and vapor permeation technique. The operating temperatures, methanol concentration in feed mixtures, and SSA concentrations in PVA membranes were varied to investigate the separation performance of PVA/SSA membranes and the optimum separation characteristics by pervaporation and vapor permeation. And also, for PVA/SSA membranes, the swelling measurements were carried out to study the transport phenomena. The swelling measurements were carried out for pure MTBE and methanol, and MTBE/methanol=90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. There are two factors of the membrane network and the hydrogen bonding. In pervaporation separation was also carried out for MTBE/methanol=90/10, 80/20 mixtures at various temperatures. The sulfuric acid group in SSA took an important role in the membrane performance. The crosslinking effect might be over the hydrogen bonding effect due to the sulfuric acid group at 3 and 5% SSA membranes, and this two factors act vice versa on 7% SSA membrane. In this case, the 5% SSA membrane shows the highest separation factor of 2,095 with the flux of 12.79g/㎡·hr for MTBE/methanol=80/20 mixtures at 30℃ which this mixtures show near the azeotopic composition. Compared to pervaporation, vapor permeation showed less flux and similar separation factor. In this case, the flux decreased significantly because of compact structure and the effect of hydrogen bonding. In vapor permeation, density or concentration of methanol in vaporous feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membranes shows the highest separation factor of 2,187 with the flux of 4.84g/㎡·hr for MTBE/methanol=80/20 mixtures at 30℃.

Phospholipid Polymer, 2-Methacryloyloxyethyl Phosphorylcholine and Its Skin Barrier Function

  • LeeCho, Ae-Ri
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1177-1182
    • /
    • 2004
  • The effect of poly[2-methacryloyloxyethyl phosphorylcholine] (pMPC) on the skin permeation property was investigated by performing in vitro skin permeation study of a model drug, nicotinic acid (NA). Effect of pMPC polymer in donor solution on skin permeation rates was evaluated using side-by-side diffusion cells. Also, the structural alterations in the stratum corneum (SC), inter-lamellar bilayer (ILB) and dermis layers in pMPC-treated and -untreated skin sections were investigated with transmission electron microscopy (TEM). The permeation profile of NA without pMPC in donor solution showed biphasic mode: initial $1^{st} phase and 2^{nd}$ hydration phase. The sudden, more than 10-fold increase in flux from the initial steady state (43.5 $\mu g/cm^2$/hr) to the $2^{nd}$ hydration phase (457.3 $\mu g/cm^2$/hr) suggests the disruption of skin barrier function due to extensive hydration. The permeation profile of NA with 3% pMPC in the donor solution showed monophasic pattern: the steady state flux (10.9 $\mu g/cm^2$/hr) without abrupt increase of the flux. The degree of NA permeation rate decreased in a concentration-dependent manner of pMPC. TEM of skin equilibrated with water or 2% pMPC for 12 h showed that corneocytes are still cohesive and epidermis is tightly bound to dermis in 2% pMPC-treated skin, while wider separation between corneocytes and focal dilations in inter-cellular spaces were observed in water-treated skin. This result suggests that pMPC could protect the barrier property of the stratum corneum by preventing the disruption of ILB structure caused by extensive skin hydration during skin permeation study.

Evaluation of Gas Transport Parameters through Dense Polymeric Membranes by Continuous-Flow Technique (연속흐름방식에 의한 기체투과특성 측정 및 분석)

  • 염충균;이정민;홍영택;김성철
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.141-150
    • /
    • 1999
  • A novel permeation apparatus was developed which could make the on-line measurements of both flux transient and permeate composition in gas permeation. The measurement by using the per¬meation apparatus was based on the continuous-flow technique. The transient measurement allowed the simultaneous determinations of permeation characteristics, such as, permeability, diffusion and solubility coefficients, and activation energies only with one experiment. The apparatus performance was illustrated by conducting the permeation of pure gases through two glassy polyimides and a rubbery poly (dimethyl¬siloxane) membranes, respectively. A comparison of the permeation characteristics determined from the flux transients was made with the literature values for verifying the confidence and accuracy of the measurement. Also, the analysis of the permeation transients obtained was carried out for the close investigation of the permeation behaviors of gases through membrane.

  • PDF

Fouling Characteristics in the Microfiltration of Mixed Particle Suspensions (혼합입자 용액의 정밀여과막 오염특성)

  • 정건용
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.161-169
    • /
    • 2001
  • Single and mixed particle suspensions of kaolin, bentonite, starch and PMMA were carried out using a dead-end Amicon fi1tration cell with microfilteration membranes. The experimental data of permeate fluxes were fitted by the constant pressure fi1tration models in order to investigate fouling steps. In 0.1 wt% mixed solution of equal amount of kaolin and starch, the permeation flux was about 30% lower than the average of each particle flux. However, the permeation flux for kaolin/PMMA mixed solution was about 10% higher than the average of each particle flux. In the cases of bentonite and PMMA or starch mired solution, the improvement effect on permeation flux was weaken than that of kaolin mixed solution. Also, the membrane fouling resistance for mixed particle solution of equal amount of kaolin and starch was minimum at 0.05 wt% particle concentration.

  • PDF

Effect of Enhancers and Pressure Sensitive Adhesives on the Transdermal Delivery of Fentanyl

  • Lee, Ji-Young;Jang, Joon-Ho;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.4
    • /
    • pp.223-228
    • /
    • 2008
  • The purpose of this study was to investigate the feasibility of developing transdermal drug delivery system (TDDS) for fentanyl used for the management of chronic cancer pain. The effect of type of pressure sensitive adhesive on the permeation of fentanyl from polyisobutylene (PIB), silicone and acrylic adhesive was evaluated. Due to the good adhesive force and relatively steady flux for 3 days, both acrylic and PIB adhesives were chosen for further study. The permeation rate of fentanyl was the highest from acrylic adhesive with hydroxyl functional group. Permeation rate increased linearly as the concentration of fentanyl in acrylic adhesive was increased from 2.5% to 10%. In case of PIB adhesive, crystals of fentanyl were developed above 5% drug load. $Crovol^{(R)}$ A40, $Crovol^{(R)}$ PK40 and Plurol $oleique^{(R)}$ provided higher flux of fentanyl.

Dense Ceramic-metal Composite Inorganic Membranes for Oxygen Separation (산소 분리를 위한 무공성 세라믹- 금속 복합 무기막)

  • 김진수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.05a
    • /
    • pp.35-41
    • /
    • 2002
  • Dense oxygen ionic conducting materials can be used for oxygen separation membranes at high temperatures. However, they show relatively low permeation flux because of their large resistances. To reduce resistances and improve the oxygen permeation flux, thin dense yttria-stabilized-zirconia (YSZ)/Pd composite dual-phase membranes were fabricated by a new approach that combines the reservoir method and chemical vapor deposition (CVD). A thin porous YSZ layer was coated on a porous alumina support by dip-coating the YSZ suspension. A continuous Pd phase was formed inside pores of the YSZ layer by the reservoir method. The residual pores of the YSZ/Pd layer were plugged with yttria/zirconia by CVD to ensure the gas tightness of the membranes. The oxygen permeation fluxes through these composite membrane were 2.0$\times$10$^{-8}$ mol/cm$^2$.s and 4.8$\times$10$^{-8}$ mol/cm$^2$.s at 105$0^{\circ}C$ when air and oxygen were used as the permeate gases, respectively. These oxygen permeation values are about 1 order of magnitude higher than those of pure YSZ membranes prepared under similar conditions.

  • PDF