• Title/Summary/Keyword: Permeance

Search Result 229, Processing Time 0.025 seconds

Development of Functional Hanji Added Citrus Peel(I) - Hanji added Korean citrus peel - (감귤박을 첨가한 기능성 한지제조 기술개발(제1보) - 한국산 감귤박 첨가 한지 -)

  • Kim, Hae-Gong;Lim, Hyun-A;Kim, So-Young;Kang, Sool-Saeng;Lee, Hyo-Yeon;Yun, Pil-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.38-47
    • /
    • 2007
  • This study was carried out to develop a new application field and obtain the basic data of citrus peel as waste in Jeju island and traditional Hanji for producing functional Hanji. The results measuring physical and optical properties, water vapor permeance and antibacterial activity are as follows. It was revealed that apparent density go as down but bulk raise up in the structural view of Hanji with increasing of the addition various Korean citrus peel (citrus unshiu, cheonggyun and hanrabong peel, and citrus unshiu peel powder) percentages, and that the density of Hanji added citrus unshiu peel was higher, but bulk was lower in compared with Hanji added other kinds of peel. Those Hanji added citrus unshiu peel, cheonggyun peel, hanrabong peel and citrus unshiu powder were very great not only in the strength (breaking length, burst index, tear index and folding endurance) but also in water vapor permeant rate in comparison with Hanji. The pHs of Hanji were neutrality (7 to 8). The brightness of the Hanji added various citrus peel percentages was low in compared to Hanji, and the 40% addition of hanrabong peel was the lowest. When 40% hanrabong peel was added to Hanji, it was very yellow in the color degree. When cheonggyun peel was added to Hanji manufacture, water vapor permeant rate was highly effective. It is known that vacant space of intrafiber was reduced by image analysis of Hanji and the additions of peel of citrus unshiu, cheonggyun and hanrabong were distributed equally in the interior of Hanji. The antibacterial activity of Hanji added citrus unshiu peel is more than 98%. After all, it would be able to increase utilization of Hanji, extensively. Namely, production of high quality Hanji added functional materials is expected for new valuable industry of citrus peel and Hanji.

Recent Research Trends of Mixed Matrix Membranes for CO2 Separation (이산화탄소 분리용 혼합 매질 분리막 최신 연구 동향)

  • Chi, Won Seok;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.373-384
    • /
    • 2015
  • In the past few decades, polymeric membrane has played an important role in gas separation applications. For the separation of $CO_2$, one of greenhouse gases, high permselectivity, long-term stability and scale-up are needed. However, conventional polymeric membranes have shown a trade-off relation between permeability and selectivity while inorganic materials are highly permeable but expensive. Mixed matrix membranes (MMMs) combining the advantages of both polymeric and inorganic materials have become a possible breakthrough for the next-generation gas separation membranes. The MMMs could be either symmetric or asymmetric but the latter is more preferred to improve the permeance. Important factors influencing the MMM fabrication include homogeneous distribution of inorganic particles and good interfacial contact between inorganic filler and organic matrix. Recently, metal organic frameworks (MOFs) have received much attention as a new class of porous crystalline materials and a potential candidate for $CO_2$ separation. Zeolitic imidazolate frameworks (ZIFs), a sub-branch of MOFs, are the most widely used in MMMs due to small particle size and appropriate pore size for $CO_2$ separation. One of the major issues associated with the incorporation of porous particles in a polymeric membrane is to control the microstructure of the porous particle materials such as particle size, orientation, and boundary conditions etc. In this review, major challenges surrounding MMMs and the strategies to tackle these challenges are given in detail.

Olefin Separation Membranes Based on PEO/PDMS-g-POEM Blends Containing AgBF4/Al(NO3)3 Mixed Salts (AgBF4/Al(NO3)3 혼합염이 포함된 PEO/PDMS-g-POEM 블렌드 기반의 올레핀 분리막)

  • Kim, Sang Jin;Jung, Jung Pyu;Park, Cheol Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.496-502
    • /
    • 2015
  • Facilitated transport is one of the possible solutions to simultaneously improve permeability and selectivity, which is challenging in conventional polymer-based membranes. Olefin/paraffin separation using facilitated transport membrane has received much attention as an alternative solution to the conventional distillation process. Herein, we report olefin separation composite membranes based on the polymer blends containing $AgBF_4/Al(NO_3)_3$ mixed salts. Free radical polymerization process was used to synthesize an amphiphilic graft copolymer of poly(dimethyl siloxane)-graft- poly(ethylene glycol) methyl ether methacrylate (PDMS-g-POEM). In addition, poly(ethylene oxide) (PEO) was introduced to the PDMS-g-POEM graft copolymer to form polymer blends with various ratios. The propylene/propane mixed-gas selectivity and permeance reached up to 5.6 and 10.05 GPU, respectively, when the PEO loading was 70 wt% in polymer blend. The improvement of olefin separation performance was attributed to the olefin facilitating silver ions as well as the highly permeable blend matrix. The stabilization of silver ions in the composite membrane was achieved through the introduction of $Al(NO_3)_3$ which suppressed the reduction of silver ions to silver particles.

Effect of Ozone on Gas Separation Membranes for On-Board Inert Gas Generation System (OBIGGS) (OBIGGS용 기체 분리막에서 오존이 미치는 영향)

  • Jung, Kyung Nam;Woo, Seung Moon;Kim, Se Jong;Kim, Ji Hyeon;Han, Sang Hoon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.406-413
    • /
    • 2018
  • In OBIGGS, a small amount of ozone in the atmosphere damages the polymer membrane. Therefore, the ozone removal device is installed at the front end to prevent the damage of the membrane by reducing the concentration of ozone in the gas delivered to the membrane. In this study, two hollow fiber membranes, PI and PSf, used to fabrication hollow fiber module with an effective membrane area of $6.37cm^2$ for gas separation in OBIGGS. The ozone concentration in the chamber was maintained at 2-3 ppm. The gas was continuously supplied into the module by using a pump. The gas permeation characteristics and the tensile strength were evaluated as a function of ozone exposure time. The PI-based hollow fiber membrane showed only 20% reduction in the transmittance, and remained its original uniformity without any significant changes. However, when PSf type hollow fiber membranes were used, the permeability decreased by more than 80% and the tensile strength decreased by more than 70%.

Suitability of Counter-current Model for Biogas Separation Processes using Cellulose Acetate Hollow Fiber Membrane (셀룰로오스 아세테이트 중공사 분리막을 이용한 바이오가스 분리에 대한 향류 흐름 모델의 적용성)

  • Jung, Sang-Chul;Kwon, Ki-Wook;Jeon, Mi-Jin;Jeon, Yong-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.43-52
    • /
    • 2020
  • As the membrane gas separation technology grows, various models were developed by numerous researchers to describe the separation process. In this work, the counter-current model was compared thoroughly with experimental data. Experimentally, hollow fiber membrane using CA module was prepared for the separation of biogas. The pure gas permeation properties of membrane module for methane, nitrogen, oxygen, and carbon dioxide were measured. The permeance of CO2 and CH4 were 25.82 GPU and 0.65 GPU, respectively. The high CO2/CH4 selectivity of 39.7 was obtained. the separation test for three different simulated mixed gases were carried out after pure gas test, and the gas concentration of the permeate at various stage-cut were measured from CA membrane module. Results showed that the experimental data agreed with the numerical simulation. A mathematical model has implemented in this study for the separation of biogas using a membrane module. The finite difference method (FDM) is applied to calculate the membrane biogas separation behaviors. Futhermore, the counter-current model can be considered as a convenient model for biogas separation process.

Appropriate Technology and Field Application of Non-powered Water Purification System Using Nanofiber Membrane (나노섬유 멤브레인 기반 무동력 정수 시스템의 적정기술 및 현장 적용)

  • Lee, Jin;Yun, Byeong Gweon;Han, Kyoung Gu;Lee, Seung Hoon;Kim, Cheol Hyeon;Kim, Chan;Lee, Yunho;Lee, Dongwhi;Lee, Seunghyeok;Kim, Kyoung-Woong
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.72-81
    • /
    • 2021
  • Gravity-driven membrane (GDM) filtration system based on the nanofiber membrane was investigated. This system can be operated with little energy demand due to a gravitational pressure-driven filtration and biological fouling control strategy. Moreover, the optimal module configuration based on the high permeance of nanofiber membrane can provide a significantly high water productivity. In order to evaluate its applicability potential, the pilot-scale (3000-5000 L/day) systems with nanofiber membranes were operated in developing countries (Kiribati and Tuvalu). Our results showed that the 14-92 L/(m2×h) of the permeate flux was determined indicating a stabilized water productivity. In addition, the permeate water indicated a high removal rate (more than 99.99%) of turbidity and bacteria. Consequently, the system can provide a stabilized water production with safe permeate water quality during long-term operation. These findings exemplify an effective approach to decentralized drinking water treatment for developing countries.

Capping Intercrystalline Defects of Polycrystalline UiO-66 Membranes by Polydimethylsiloxane Coating (폴리다이메틸실록산 코팅을 통한 다결정성 UiO-66 분리막의 비선택적 결정립계 결함 캡핑)

  • Ik Ji Kim;Hyuk Taek Kwon
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.71-75
    • /
    • 2023
  • In general, the presence of non-selective intercrystalline (grain boundary) defects in polycrystalline metal-organic framework (MOF) or zeolite membranes, which are known to be ca. 1 nm in size, causes lower membrane performance (selectivity) than the intrinsically expected. In this study we show that applying a thin polymeric coating of polydimethylsiloxane (PDMS) on a polycrystalline MOF membrane is effective to cap the non-selective intercrystalline defects and therefore improve membrane performance. To demonstrate the concept, first, polycrystalline UiO-66, one of Zr-based MOFs, membranes were prepared by an in-situ solvothermal growth. By controlling membrane growth condition with respect to growth temperature, we were able to obtain polycrystalline UiO-66 membranes at 150 ℃ with intercrystalline defects of which the quantity is not significant, so it can be plugged by the suggested PDMS deposition. Second, their performances were compared before and after the PDMS deposition. As expected, the PDMS deposition ended up with a noticeable increase in CO2/N2 ideal selectivity from 6 to 14, indicating successful intercrystalline defect plugging. However, the enhancement in CO2/N2 selectivity was accompanied by a significant reduction in CO2 permeance from 5700 to 33 GPU because the PDMS deposition not only plugs defects but also forms a continuous coating on membrane surface, adding an additional transport resistance.

Polyether Ether Ketone Membrane with Excellent Pure Permeability Using Thermally Induced Phase Separation Method and Morphology Analysis with Characterization (열유도 상분리법을 이용한 순수 투과 성능이 우수한 폴리에테르 에테르 케톤 분리막 제조와 모폴로지 분석 및 특성평가)

  • Kwang Seop Im;Seong Jun Jang;Chae Hong Lim;Sang Yong Nam
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.214-221
    • /
    • 2024
  • Polyether ketone (PEEK) has been widely used in membranes because of its excellent thermal stability, chemical resistance, and significant mechanical strength. However, the melting temperature is very high, making it difficult to find suitable solvents. Therefore, in this study, PEEK and benzophenone (DPK) were used as diluents to prepare a membrane with excellent mechanical strength and chemical stability using the thermally induced phase separation (TIPS) method to compensate for the shortcomings of PEEK membrane preparation and achieving the highest performances. The optimal membrane manufacturing conditions were confirmed through the crystallization temperature and cloud point according to the polymer content through the phase diagram. Subsequently, the morphological changes of the membrane, influenced by the polymer and diluent content, were confirmed through scanning electron microscopy (SEM). Additionally, the membrane thickness tended to increase with higher polymer content. Tensile strength and DI-water permeability tests were conducted to confirm the mechanical strength and permeability of the membrane. Through the previous characteristic evaluation, it was confirmed that the membrane using PEEK had excellent mechanical strength and permeability.

Empirical Study of Biogas Purification Equipment (바이오가스 정제 설비의 실증 연구)

  • Hwan Cheol Lee;Jae-Heon Lee
    • Plant Journal
    • /
    • v.18 no.4
    • /
    • pp.58-65
    • /
    • 2023
  • In this study, to increase the methane content of biogas supplied from Nanji Water Regeneration Center and to purify impurities, a three-stage membrane purification process was designed and installed to demonstrate operation. The methane concentration of biomethane produced in the 2 Nm3/h purification process was set to three cases: 95%, 96.5%, and 98%, and the membrane area ratio of the membrane was 1:1, 1:2, 1:1:1, The optimum conditions for the membrane area of the separator were derived by changing to five of 1:2:1 and 1:2:2. 3 stage separation membrane process of 30 Nm3/h was installed to reflect the optimum condition of 2 Nm3/h, and biomethane production of 98% or more of methane concentration was demonstrated. As a result of the operation of the 2 Nm3/h refining device, the methane recovery rate at the 98% methane concentration was 95.6% when the membrane area ratio was 1:1 as the result of the two-stage operation of the separator, and the recovery rate of methane at 1:2 was increased to 96.8%. The methane recovery rate of the membrane three-stage operation was highest at 96.8% when the membrane area ratio was operated at 1:2:1. The carbon dioxide removal rate was 16.4 to 96.4% and the 2:2 to 95.7% film area ratio in the two-step process. In the three-step process, the film area ratio was 1:2:1 to 95.4%, and the two-step process showed higher results than the three-step process. In the 30 Nm3/h scale biogas purification demonstration operation, the methane concentration after purification was 98%, the recovery rate of methane was 97.1%, the removal rate of carbon dioxide was 95.7%, and hydrogen sulfide, the cause of corrosion, was not detected, and the membrane area ratio was 1:2:1 demonstration operation, biomethane production with a methane concentration of 98% or higher was possible.

  • PDF