• Title/Summary/Keyword: Permeable design

Search Result 126, Processing Time 0.026 seconds

Physical and Mechanical Proeperties of Permeable Polymer Concrete with Fly Ash and CaCO3 (플라이 애시와 탄산칼슘을 혼입한 투수성 폴리머 콘크리트의 물리.역학적 특성)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.104-110
    • /
    • 1999
  • This study was performed to evaluate the properties of permeable polymer concrete with fly ash and CaCO3. The following conclusions are drawn. The static modulusof elasticity is in the range of 1.19 $\times$105 ~1.49$\times$105 kgf/$\textrm{cm}^2$, which is approximately 53 ~56% of that of the normal cement concrete. The oission's number of permeable polymer concrete is in the range of 3.95 ~6.53, which is less than that of the normal cement concrete. The dynamic modulus of elasticity is in the range of 1.29$\times$105 ~1.59$\times$105 kgf/$\textrm{cm}^2$, which is approximately less compared to that of the normal cement of the static modulus . Fly ash 50% and CaCO3 50% filled permeable polymer concrete has showed higher dynamic modulus. The water permeability is in therange of 3.971 ~4.393$\ell$ /$\textrm{cm}^2$/h, and it is largely dependent upon the mix design. These concrete can be used to the structures which need water permeability.

  • PDF

Effects of Filler on Engineering Properties of Permeable Polymer Concrete (충전재가 투수용 폴리머 콘크리트의 공학적 성질에 미치는 영향)

  • Sung, Chan Yong;Jung, Hyun Jung;Min, Jeong Ki
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.51-60
    • /
    • 1996
  • This study was performed to evaluate the effects of filler on engineering properties of permeable polymer concrete with unsaturated polyester resin. The following conclusions were drawn; 1. The unit weight was in the range of $1.804{\sim}1.919t/m^3$, the weights of those concrete were decreased 17~22% than that of the normal cement concrete. 2. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive, 147% by tensile and 188% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 2,722~3,060m/sec, which was showed about the same compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher pulse velocity. 4. The water permeability was in the range of $3.076{\sim}4.152{\ell}/cm^2/h$, and it was larglely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 5. The compressive strength, tensile strength, bending strength and ultrasonic pulse velocity were largely showed with the increase of unit weight. But, it was decreased with the increase of water permeability, respectively.

  • PDF

Mechanism of TCE Removal with Foundry Sands and Design of Permeable ]Reactive Barriers (주물사의 TCE 제거 메커니즘과 반응벽체에의 적용가능성)

  • ;Benson, Craig H
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.143-157
    • /
    • 2002
  • Batch and column tests were conducted with common groundwater contaminants (i.e., trichloroethylene) to determine transport parameters and reactivity of the foundry sands. The reactivities of foundry sands for common groundwater contaminants are comparable to or slightly higher than those for Peerless iron a common medium used in permeable reactive barriers. In addition, the TOC and clay in foundry sands can significantly retard the movement of target contaminants, which may result in lower effluent concentrations of contaminants due to biodegradation. In general, permeable reactive barriers with the thickness of 1m can be constructed with many foundry sands to treat typical groundwater comtaminants provided the zero-valent iron content in the foundry sand is higher than 1%.

Transient Response of a Permeable Crack Normal to a Piezoelectric-elastic Interface: Anti-plane Problem

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1500-1511
    • /
    • 2004
  • In this paper, the anti-plane transient response of a central crack normal to the interface between a piezoelectric ceramics and two same elastic materials is considered. The assumed crack surfaces are permeable. By virtue of integral transform methods, the electro elastic mixed boundary problems are formulated as two set of dual integral equations, which, in turn, are reduced to a Fredholm integral equation of the second kind in the Laplace transform domain. Time domain solutions are obtained by inverting Laplace domain solutions using a numerical scheme. Numerical values on the quasi-static stress intensity factor and the dynamic energy release rate are presented to show the dependences upon the geometry, material combination, electromechanical coupling coefficient and electric field.

Properties of ECO-permeable Polymer Concrete (환경 친화형 투수성 폴리머 콘크리트의 특성)

  • Park, Fill-Woo;Youn, Joon-No;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.149-152
    • /
    • 2002
  • This study is performed to evaluate the properties of ECO-permeable polymer concrete with blast furnace slag powder and stone dust. The unit weight is in the range of $1,821kg/m^3{\sim}1,955kg/m^3$, the unit weights of those concrete are decreased $15%{\sim}20.8%$ than that of the normal cement concrete. The highest strength is achieved by ECO-permeable polymer concrete filled blast furnace slag powder 50% and stone dust 50%, it is increased 36% by compressive strength, 119% by tensile strength and 217% by bending strength than that of the normal cement concrete, respectively. The coefficient of permeability is in the range of $5.6{\times}10^{-2}cm/s{\sim}8.1{\times}10^{-2}cm/s$, and it is largely dependent upon the mix design.

  • PDF

Disaster Prevention Technology in Response to Flooded Areas Using Drone Image-Based Inundation Monitoring and Prefabricated Rainwater Penetration Storage Block Structure (드론영상 기반 침수 모니터링 및 조립식 빗물 침투 저류블록 구조를 활용한 상습 침수지역 대응 방재기술)

  • Choi, Hee-Yong;Choi, Hyeong-Gil;Ryu, Jung-Rim;Kim, Won-Chang;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.411-412
    • /
    • 2023
  • The purpose of this research and development is to develop a structure module that improves the efficiency and constructability of the layout structure as well as the design development of rainwater permeable storage tank blocks using inorganic binders and aggregates with the aim of reducing greenhouse gas (CO2) with eco-friendly materials. In addition, for the efficient response to flooding of the developed permeable storage structure, we present a technical solution for combining drone mapping technology and flood monitoring technology that can analyze topographical factors in detail.

  • PDF

Development of Low Permeable Concrete for the Control of Deterioration in Underground Structures (지하구조물의 열화방지를 위한 수밀성 콘크리트의 개발)

  • Paik, S.H.;Park, S.S.;Park, J.Y.;Paik, W.J.;Um, T.S.;Choi, L.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.191-196
    • /
    • 1999
  • In underground reinforced concrete structures, such as drainage structure, water and chloride ion penetrated into concrete through the cracks of concrete and its permeable property, cause the corrosion of reinforcing steel bar, which accelerates the expansive cracks and deterioration of concrete. It is necessary to control those deterioration of underground structure by improving its permeability and durability through the reasonable solutions in design, construction and materials. In the present study, fly ash concrete, which has good material properties in long-term period, is compared and studied with plain concrete using ordinary portland cement in terms of fundamental mechanical properties, permeability, drying shrinkage and durability. Also, the mix design and its properties of low permeable concrete using fly ash are reviewed. From this study, fly ash concrete can conctrol the penetration of water and chloride ion effectively by forming dense microstructure of concrete. Therefore, fly ash concrete may increase the long-term function, performance and serviceability of underground structures.

  • PDF

Urban Density and the Porous High-Rise: The Integration of the Tall Building in the City - from China to New York

  • Klemperer, James von
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.2
    • /
    • pp.135-142
    • /
    • 2015
  • As the skyscraper matures as a building type, its role in actively connecting to, and reinforcing, major threads of urban fabric becomes increasingly more important. The creation of public spaces inside of and adjacent to tall buildings allows for significant additions to the public realm, facilitating better connections between varied uses, providing needed access to critical transportation functions. In this more integrated version of the tall building type, the density afforded by a vertical structure is complemented by strategically devised porosity of plan and section. This paper examines three major tower projects which exemplify a progressive approach to permeable design: the recently completed Jingan Kerry Centre in Shanghai, the Lotte Supertower in Seoul, now half completed, and the One Vanderbilt tower being proposed next to Grand Central Terminal in New York City. These projects suggest possibilities for innovative approaches to private development strategies, public planning processes, and architectural design.

Analysis of Runoff Reduction Effect and Rainfall Intensity-Duration Time of Permeable Block Facility (투수블록시설의 유출저감효과 분석 및 강우강도-지속시간 관계 분석)

  • Han, Sangyun;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Non-point pollution adversely affects the water system and its influence is increasing. In order to manage such nonpoint source pollution, the government has conducted studies on LID (Low Impact Development) facilities and various efficiency evaluations. In this study, the actual installed permeable block facility among the various LID facilities was analyzed the effluent reduction rate, the residual rainfall analysis, the runoff duration time and the reduction rate of the maximum inflow and outflow for the rainfall runoff control and the results were compared the other facilities. The analysis results show that the reduction efficiency is high in order of impermeable block, filter type permeable block, and clearance type permeable block, and the graph showing the relationship between the rainfall intensity and the runoff duration time is presented. This graph can be helpful in the design of facilities such as the facility capacity selection according to the reproduction period of the permeable block facility similar to this.

A Study on Hydraulic Characteristics of Permeable Rock Fractures in Deep Rock Aquifer Using Geothermal Gradient and Pumping Test Data (지온경사와 양수시험 자료를 활용한 심부 암반대수층 투수성 암반균열의 수리특성 연구)

  • Hangbok Lee;Cholwoo Lee;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.312-329
    • /
    • 2024
  • In various underground research projects such as energy storage and development and radioactive waste disposal targeting deep underground, the characteristics of permeable rock fractures that serve as major pathway of groundwater flow in deep rock aquifer are considered as an important evaluation factor in the design, construction, and operation of research facilities. In Korea, there is little research and database on the location and hydraulic characteristics of permeable rock fractures and the pattern of groundwater flow patterns that may occur between fractures in deep rock boreholes. In this paper, the hydraulic characteristics of permeable rock fractures in deep rock aquifer were evaluated through the analysis of geothermal gradient and pumping test data. First, the deep geothermal distribution was identified through temperature logging, and the geothermal gradient was obtained through linear regression analysis using temperature data by depth. In addition, the hydraulic characteristics of the fractured rock were analyzed using outflow temperature obtained from pumping tests. Ultimately, the potential location and hydraulic characteristics of permeable rock fractures, as well as groundwater flow within the boreholes, were evaluated by integrating and analyzing the geophysical logging and hydraulic testing data. The process and results of the evaluation of deep permeable rock fractures proposed in this study are expected to serve as foundational data for the successful implementation of underground research projects targeting deep rock aquifers.