• Title/Summary/Keyword: Permeability coefficient

Search Result 607, Processing Time 0.023 seconds

Design of Vertical Drain in Consideration of Smear Effect and Well Resistance (교란효과와 배수저항을 고려한 연직 배수재 설계)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.115-123
    • /
    • 2000
  • This study compared the degree of consolidation by hyperbolic, curve fitting , Asaoka's and methods using values measured with a theoretical curve in consideration of smear effect and well resistance. The degree of consolidation by the Hyperboilc method was underestimated than the degree of consolidation by Curve fitting. Asaoka's , and Monden's methods. The typical range of the coefficient of horizontal consolidation was Ch=(2-3)Cv in the case considering smear effect and well resistance, and Ch =(0.5-2.1) Cv in the case disregarding smear effect and well resistance. The degree of consolidation obtained by ground settlement monitoring was nearly the same value when the coefficient of smear zone permeability by back analysis was shown to be half that of in-situ and the diameter of the smear zone was shown to be double that of mandrel. By increasing the diameter reduction ratio of the drain, the time of consolidation was delayed. The effect of well resistance showed that the case of a small coefficient of permeability was much more than in the case of a large coefficient of permeability . It was recommended that when designing diameter reduction of a drain, well resistance should be considered.

  • PDF

Analysis on Character and Ability of In -Plane Permeability of Geotextiles Used for Darainage (배수용 Geotextlle의 평면투수 성능분석)

  • 이상호
    • Geotechnical Engineering
    • /
    • v.8 no.3
    • /
    • pp.61-74
    • /
    • 1992
  • In order to provide fundamental data for the design of geotextile drains, the in-plane permeability coefficients were determined by tests and permeable cllaracteristics were investigated, mainly on domestic nonwoven and composite getextile products used for drainage purpose. The results obtained are as follows, The thickness, the in-plane permeability coefficient and the transmissivity with the in- crease of compressive stress are found to be remarkably decreased when the compressive stress is lass than about 10KN/m2. The inflane permeability of filament nonwovens are found to be lower than that of composites or staple-fiher nonwovens, and the compressibility of the geotextile shown to be larger for the polyester nonwovens than for the polypropylene nonwovens. The relation of compressive stress, q and compressibility, Cr is expressed as Cr=13.37 In q+23.28 and that of compressibility on the basis of 2KN /m2, Cr' and decrease ratio of in-plane permeability coefficient is followed Pr: 1.25Cr'

  • PDF

Change of Hydraulic Properties of Sand due to Fine Diatom Particle Migration (미세 Diatom 입자 이동에 의한 모래지반의 투수 특성 변화)

  • Pyo, Won-Mi;Lee, Jong-Sub;Lee, Joo Yong;Hong, Won-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.19-32
    • /
    • 2018
  • During the process of gas hydrate extraction in the deep seabed, fine diatom particle migration occurs, which causes the seabed slope failure and the productivity deterioration of the gas hydrate. Therefore, a study related with the changes of the ground characteristics due to the fine particle migration is required. The objective of this study is to investigate the change of hydraulic properties of sand due to the migration of fine diatom particle in sandy soils. In order to simulate the sediments of the Ulleung basin gas hydrate in the East Sea, fifteen sand-diatom mixtures that have different diatom volume fractions (DVF) are prepared. During the falling head permeability tests, the coefficients of permeability are measured according to the DVF. In addition, for the simulation of the fine diatom particle migration, constant head permeability tests are conducted by applying the hydraulic pressures of 3 kPa, 6kPa, and 9 kPa on a specimen composed of two layers: a specimen with 50% DVF in upper layer and a specimen with 0% DVF in lower layer. Furthermore, the coefficient of permeability and the electrical resistivity of the migration zone are measured during the constant head permeability test. The falling head permeability tests show that the coefficient of permeability decreases as the DVF of the specimen increases. In addition, the gradient of the coefficient of permeability curve decreases in the DVF range of 10%~50% compared with that of 0%~10%, and increases above 50% in DVF. The result of constant head permeability tests shows that the coefficient of permeability decreases and electrical resistivity increases in the migration zone due to the fine diatom particle migration. This study demonstrates that fine diatom particle migration reduces the permeability of the soils and the behavior of the migration zone due to the fine diatom particle migration may be estimated based on the reversal relationship between the coefficient of permeability and the electrical resistivity.

An Estimation of Smear Zone Induced by Vertical Drain Construction Based on the Laboratory Model test (실내모형실험을 통한 연직배수재 타설에 의한 스미어존의 평가)

  • Kim, Hong-Taek;Han, Yeon-Jin;Kim, Seong-Wook;Hwang, Jeong-Soon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.279-282
    • /
    • 2007
  • When ground disturbance takes place due to vertical drain construction through mandrel penetration, that affects excess pore water pressure dissipation time because of soft clay coefficient of permeability decreasing. Eventually, consolidation time is influenced. In this research, we measure process of excess pore water pressure dissipation before and after each other different shape's mandrel penetration through model test, and calculates range of smear zone, coefficient of permeability and horizontal coefficient of consolidation after model test. Using of test result, we grasp a degree of drainage ability drop resulting from vertical drain construction.

  • PDF

Consolidation Characteristics of Chungju Dam Deposit Soil in the Load Increment Ratio (하중증가비에 따른 충주댐 퇴적지반의 압밀 특성)

  • 이준대;오세욱
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.123-126
    • /
    • 2000
  • This study shows consolidation properties resulted from the experiment made on changes by load increment ratio and consolidation duration of standard consolidation test using deposit soil of Chungju Dam. Though the comparison and analysis of the result turned out that void ratio by load increment ratio was unchanged greatly, the result was inclined as followes : the smaller load increment ratio is, the bigger void ratio is, while the bigger load increment ratio is the bigger settlement is. Also coefficient of consolidation is increased in inverse ratio to load increment ratio. Coefficient of permeability is increased in proportion to load increment ratio, it is not fixed changes by consolidation duration, however. Degree of consolidation is increased to load increment ratio.

  • PDF

Prediction of Long-Term Carbonation Depth by Measurement of the Air Permeability Coefficient of Coating on Concrete (콘크리트에 도포된 도막의 투기계수 측정을 통한 장기 중성화 깊이 예측)

  • Park, Dong-Cheon;Nam, Min-Seok;Kim, Yong-Ro;Ko, Hyo-Jin;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.113-114
    • /
    • 2023
  • This study measured the thickness and speculation coefficient of the coating for existing buildings and calculated the diffusion coefficient of the coating to predict the depth of carbonation through numerical analysis in order to evaluate the impact of the external finish and local environment. As a result, it was possible to predict the short-term and long-term carbonation depth of reinforced concrete buildings coated with coating film with considerable reliability.

  • PDF

Evaluation of Permeability Characteristics of Yangsan Clay using Piezocone Penetration Tests and Laboratory Tests (피에조 콘 시험과 실내시험을 이용한 양산점토의 투수특성 평가)

  • Gu, Namsil;Kim, Youngmin;Park, Jaehwhan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.47-54
    • /
    • 2011
  • Consolidation behavior of soft clay is generally to be affected by its compressibility and deformation characteristics. Especially, soil permeability depends on soil characteristics including its type of anisotropy. Coefficient of permeability of soft clay is mostly estimated by using laboratory(Oedometer test) and in-stiu piezocone test. The permeability characteristics of soft clay is estimated by excess pore pressure dissipation test results. In this study, the tests were performed to find out the validity of the existing theoretical formula in clay by pore pressure dissipation test and laboratory test results. After grasping of variation the coefficient of permeability ratio(${k_{h}/k_{v}}$) in different clay soils, it was found out adequate solution of in-stiu permeability ratio(${k_{h}/k_{v}}$). Piezocone tests and laboratory tests were performed at the site of pilot project of ground improvement at Yangsan-Mulgeum, Gyeongsangnam-do. Comparisons of the estimated values of ${k_{h}/k_{v}}$ using piezocone tests results and those from laboratory consolidation tests were carried out. Test results show that values of ${k_{h}/k_{v}}$ by piezocone test result(5.85) is similar of it's laboratory test(5.28).

Evaluation of Permeability on Construction Material in CFRD Bedding Zone (CFRD Bedding Zone의 축조재료에 대한 투수성 평가)

  • Han, Sang-Hyun;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.493-499
    • /
    • 2009
  • Recently, the construction of Concrete Faced Rockfill Dam (CFRD) is increasing because rock material resources are plenty in Korea. Bedding zone in the CFRD is necessary enough bearing capacity to support the concrete face slab uniformly and enough impermeability to prevent the loss of fine soils in case of leakage from the concrete slab face. Therefore, cut-off the water leakage in bedding zone securely is the key factor influencing the safety of CFRD. Tested materials satisfied with the specification of particle size distribution at the Bedding Zone area are chosen for conducting permeability tests, which are done to evaluate the property of cut off the materials. Based on the test results, the effects of cut off the materials are investigated by considering the coefficient of permeability, the soil particle distribution, and the dry unit weight. Especially, the relationships between coefficient of permeability with effective size(D10), dry unit weight, and weight passing percent the No.4 sieve are suggested, and also the variation of coefficient of permeability with time are proposed.

Changes in Cement Hydrate Characteristics and Chloride Diffusivity in High Performance Concrete with Ages (재령에 따른 고성능 콘크리트의 수화 특성치와 염화물 확산성 변화)

  • Koh, Tae-Ho;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.9-17
    • /
    • 2019
  • Cement hydrates and the related characteristics change with ages, and the behaviors are much related with chloride diffusion. In this work, 30% replacement ratio with FA(Fly Ash) and GGBFS(Ground Granulated Blast Furnace Slag) are considered for concrete with three levels of W/B (Water to Binder ratio) and 2 years of curing period. Chloride diffusion coefficients from accelerated condition are obtained at 5 measurement period (28days, 56days, 180days, 365days, and 730days), and the results are compared with porosity, binding capacity, and permeability from program-DUCOM. The similar changing pattern between chloride diffusion and permeability is observed since permeability is proportional to the square of porosity. Curing period is grouped into 4 periods and the changing ratios are investigated. Cement hydrate characteristics such as porosity, permeability, and diffusion coefficient are dominantly changed at the early ages (28~56 days), and diffusion coefficient in OPC concrete with low W/B continuously changes to 180days.