• 제목/요약/키워드: Permeability Performance

검색결과 666건 처리시간 0.024초

연안재해 방지 및 비점오염원 유출저감을 위한 투수블록의 특성 연구 (Permeable Coastal Pavement Structure for Shore Protection and Removal of Non-point Source Pollutants)

  • 최윤식;김종영;한상수;권순철
    • 한국해양공학회지
    • /
    • 제33권6호
    • /
    • pp.597-606
    • /
    • 2019
  • Due to climate change, coastal areas are being flooded with torrential rain, typhoons, and tsunamis. In addition, non-point source pollutants (NPSs) that accumulated on the ground, streets, and buildings during the dry season are washed off by rain and stormwater runoff, which adds to the damage associated with environmental pollution, e.g., pollution that makes its way into the ocean. Recently, low impact development (LID) has been considered as a means of controlling water circulation and NPSs. In the coastal area, permeable blocks have been constructed mainly to reduce the flood damage caused by waves. Some important design factors that must be considered to ensure long-term performance are the permeability coefficient, clogging, and the efficiency of the removal of total suspended solids (TSS), but currently there are no standardized design criteria or testing techniques that are used worldwide. Herein, we analyzed the permeability coefficient and the TSS removal efficiency tendency according to the permeability area ratio with an easily-detachable, permeable block filled with calcinated yellow soils as the filter media. Our lab-scale tests indicated that, when the permeability area ratio was 25%, the reduction of the permeability coefficient after clogged was 11%, which was a significant decrease compared to other cases. Permeability persistence increased when the permeability area ratio increased from 50% to 75%. The TSS removal efficiency decreased as the permeability area ratio increased. Our pilot-scale test indicated that the TSS removal efficiency was more than 80% higher in all cases. We also found that the permeability persistence was excellent as the permeability area ratio increased, and, in actual construction, it is effective to set 5.3% of the total area as permeable area in terms of permeability and economic feasibility.

산 이동에 따른 심층혼합기둥체 차수벽의 성능변화 (Changes of Performance of Soil-Cement Barrier due to Migration of Acids)

  • 정문경;천찬란;이주형;김강석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.189-196
    • /
    • 2003
  • Soil-cement column is often used as a contaminant barrier. This study presents the results of experimental study performed to investigate the changes of properties of soil-cement column under the attack of acids. Sulfuric nitric, and ascetic acid were used as contaminants. Specimen were made of clayey and sandy soils with addition of cement and water Permeability of soil-cement decreased with time during permeability test. When significant amount of acid percolated the specimen, permeability increased and compressive strength decreased due to the dissolution and leaching of cement and its chemical reaction compounds. Sulfuric and nitric acid were more effective than ascetic acid in deteriorating soil-cement column. Amount of acid required to lower the pH of soil cement below 12 was calculated from the results of permeability tests. This leads to a conclusion that, under the conditions employed in this study, the chemical stability of soil-cement column could be maintained against acid attack for longer than generally accepted lifetime of contaminant barriers.

  • PDF

Effect of Surface Finishing Materials on the Moisture Conditions in Concrete: Vapor and Water Permeability of Finishing Materials Under Changing Environmental Conditions

  • Ryu, Dong-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.83-90
    • /
    • 2008
  • Permeability to vapor and water among other performances required for finishing materials is dealt with in this study. The relative moisture content of concrete coated/covered with a finishing material was experimentally investigated while changing the environmental conditions including temperature, relative humidity, and rainfall. An organic paint (water-based urethane), organic synthetic resin emulsion-type film coating (film coating E), and inorganic porcelain tiles were selected as the finishing materials. When compared from the aspect of vapor and water permeability, the vapor permeability and water permeability of water-based urethane were high and low, respectively; those of film coating E were high and high, respectively; and those of porcelain tiles were low and low, respectively. This means that the moisture state of concrete structures is governed not only by the environmental conditions but also by the performance of finishing materials. It is therefore of paramount importance to appropriately select a finishing material to address the specific deteriorative factors involved in the concrete structure to be finished.

The Effect of Powder Characteristics on the Permeability of Copper Powder Wicks in Heat Pipe Applications

  • Lin, Yueh-Ju;Hwang, Kuen-Shyang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.318-319
    • /
    • 2006
  • The thermal dissipation performance of sintered heat pipes is usually determined by the capillarity and permeability of the Cu powder wicks. Since the capillary provided by the Cu powder is usually large enough to draw water from the condenser end to the evaporator end, the permeability has become the controlling factor. In this study, Cu powders with different particle sizes and shapes were loosely sintered, and their permeabilities were compared. The results show that more complicated shapes, finer particle sizes, lower porosities, and rougher pore surfaces give lower permeability and thermal dissipation.

  • PDF

콘크리트 표면처리방법에 따른 금속용사 피막의 투수성 평가에 관한 실험적 연구 (An Experimental Study on the Permeability Evaluation of Metal Spray System by Concrete Surface Treatment)

  • 박진호;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.34-35
    • /
    • 2015
  • Recently, introduction of Advanced water treatment facilities has been increasing due to serious domestic water pollution. Ozone is a strong oxidizing materials in the advanced water treatment facilities. However, due to such a strong oxidation, Ozone eroded waterproofing/corrosion on the concrete surface and caused performance degradation. Therefore, in this study, permeability experiment of metal spraying system by concrete surface treatment was conducted.

  • PDF

폴리머콘크리트의 투수성에 미치는 골재 입도 분포의 영향 (Influence of the Gradation of Aggregates on Permeability of Polymer Concrete)

  • 윤길봉;이병렬;전찬기;양성환;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.141-146
    • /
    • 2001
  • Permeable polymer concrete has a lot of internal voids, which has more excellent performance in permeability and durability than asphalt and cement concrete. Therefore, in this paper, influences of grading distribution of aggregates on the permeable polymer concrete are presented using polyester resin as binders. According to test results, it shows that compressive strength and unit weight increase with continuous grading distribution and increase of binder content, while void and permeability coefficient shows decline tendency

  • PDF

콘크리트 표면처리방법에 따른 금속용사 피막의 투수성 평가에 관한 실험적 연구 (An Experimental Study on the Permeability Evaluation of Metal Spray System by Metal Spray Coating Surface Treatment)

  • 박진호;장현오;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.50-51
    • /
    • 2016
  • Ozone is a strong oxidizing materials in the advanced water treatment facilities. However, due to such a strong oxidation, Ozone eroded waterproofing/corrosion on the concrete surface and caused performance degradation. Therefore, in this study, permeability experiment of metal spraying system by concrete surface treatment was conducted.

  • PDF

유기투과물이 자연점토의 투수성에 미치는 영향에 대한 연구 (A Study on the Effect of Organic Permeant on Permeability of a Natural Clay)

  • 전상옥;장병우;우철웅;박영곤
    • 한국농공학회지
    • /
    • 제39권4호
    • /
    • pp.98-105
    • /
    • 1997
  • Compacted clay materials are often used to form barriers for waste disposal by means of landfill. The performance of clay barrier depends on its permeability characteristics under the site environments. The study discusses permeability characteristics of 4 types of permeants through a compacted clayey soil. Permeabilities are measured using the modified rigid-wall permeater and with water, PEG, Ethanol, and TCE, ranging 80 to 3.4 of dielectric constants. Results of the study are as follows : 1) Absolute permeabilities of Ethanol and TCE that their dielectric constants are lower than that of water are $K=1.0{\times} 10^{-12} cm^2$, and $5.8{\times} 10^{-12} cm^2$, respectively, that is, 1.67, and 9.67 times of permeability of water, respectively. Absolute permeability and dielectric constant of water are $K=6{\times} 10^{-13} cm^2$, and 80, respectively. 2) Changes in absolute permeability of Ethanol and TCE converge to a constant after 3.5 pore volume of permeant flows through the clay sample. This can be explained that diffuse double layer of clay is no longer reacted with permeants and contracted their pores. However there is no change in absolute permeability when water is used as a per-meant. 3) It is found that absolute permeability in reversely proportional to the value of dielectric constant of the permeants. Change in absolute permeability of the permeants with 40 or over of dielectric constant is not significant. However change in absolute permeability of the permeant with 30 or lower dielectric constant is abruptly increased. 4) A lower absolute permeability of PEG is found because of its high viscosity.

  • PDF

탄산화된 콘크리트의 투수계수에 대한 시간단계별 해석 (Time Evolution of Water Permeability Coefficient of Carbonated Concrete)

  • 윤인석;이정윤;조병영;김영근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.1053-1056
    • /
    • 2008
  • 콘크리트의 투수계수는 콘크리트 구조물의 내구성능 및 미세구조의 밀실성을 판단하는 핵심적인 재료 매개변수이다. 투수계수를 산정하기 위한 많은 연구들이 있었으나, 시멘트 페이스트 및 골재 각각이 콘크리트의 투수성능에 미치는 영향을 다룬 연구는 드물다. 더우기, 탄산화가 염소이온의 확산계수에 큰 영향을 미칠 수 있음에도 불구하고, 탄산화된 콘크리트에 대한 확산계수를 다룬 연구는 더욱 드문 실정이다. 본 연구의 목적은 탄산화 및 비탄산화된 콘크리트의 투수계수를 추정할 수 있는 기초적 접근방법을 개발하는 것이다. 본 연구에서는 미세구조 모델 및 시멘트의 경화특성을 기초로 투수계수를 산정할 수 있는 해석적 기법이 개발되었다. 본 연구에서는 시간단계별로 변화하는 투수계수의 해석과 중성화된 콘크리트의 투수계수이다. 탄산화된 콘크리트에서 감소된 공극량이 계산되었으며 이는 투수계수의 산정에 이용되었다. 본 연구결과는 실험적 결과를 얻어서 상호 비교하여 검증하였다.

  • PDF

콘크리트의 투수성 측정 및 초저투수성 콘크리트의 개발 연구 (An Experimental Study on the Permeability Measurement and Development of Ultra Low Permeable Concrete)

  • 오병환;정원기;차수원;장봉석
    • 콘크리트학회지
    • /
    • 제8권5호
    • /
    • pp.189-200
    • /
    • 1996
  • 콘크리트의 투수성은 내구성에 커다란 영향을 미치는 요인이 된다. 콘크리트의 강도가 커질수록 투수성은 적어지므로 재래적인 방법으로는 투수 실험이 어렵다. 본 연구에서는 콘크리트의 투수성능향상을 위하여 투수성이 작은 콘크리트에 효과적으로 사용할 수 있는 새로운 투수기법을 연구하고, 투수성이 매우 낮은 초저투수성 콘크리트를 개발하는데 주목적을두고 있다. 이를 위하여 주요 실험변수로서 시멘트의 종류, 단위시멘트량, 혼화재 종류 및 첨가량 그리고 굵은 골재의 최대치수를 주요 변수로 하여 투수성 시험과 가도시험을 포괄적으로 수행하였다. 본 시험 결과 콘크리트의 강도가 증가함에 따라서 콘크리트의 내투수성은 향상됨을 알 수 있으며, 내투수성을 증진하기 위해서는 단위시멘트량의 증가보다는 적절한 혼화재 사용과 그 혼입량을 조절하는 것이 더욱 효과적임을 알 수 있었다. 보통배합의 일반 콘크리트는 투수성이 매우 높은 반면 본 연구에서 제안된 콘크리트는 실리카흄등의 적정 혼입으로 일반 콘크리트의 1/100이하의 매우 낮은 투수성을 보여 초저투수성 콘크리트의 개발이 가능하였다. 본 연구는 앞으로 콘크리트 구조물의 내구성 향상을 위한 중요한 토대를 구축하고 이에 따른 기초자료를 제공할 수 있는 것으로 사료된다.