• Title/Summary/Keyword: Permanent middle cerebral artery occlusion (pMCAO)

Search Result 7, Processing Time 0.028 seconds

Lysophosphatidic Acid Receptor 1 Plays a Pathogenic Role in Permanent Brain Ischemic Stroke by Modulating Neuroinflammatory Responses

  • Supriya Tiwari;Nikita Basnet;Ji Woong Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.319-328
    • /
    • 2024
  • Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.

Effects of (-)-Epigallocatechin-3-gallate on Brain Infarction and the Activity Change of Matrix Metalloproteinase-9 Induced by Middle Cerebral Artery Occlusion in Mice

  • Qian, Yong-Ri;Kook, Ji-Hyun;Hwang, Shin-Ae;Kim, Do-Kyung;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.3
    • /
    • pp.85-88
    • /
    • 2007
  • Matrix metalloproteinases (MMPs) can degrade a wide range of extracellular matrix components. It has been reported that MMP-9 are activated after focal ischemia in experimental animals. (-)-Epigallocatechin-3-gallate (EGCG), a major constituent of green tea polyphenols, is a potent free radical scavenger and reduces the neuronal damage caused by oxygen free radicals. And it has been known that EGCG could reduce the infarction volume in focal brain ischemia and inhibit MMP-9 activity. To delineate the relationship between the anti-ischemic action and the MMP-9-inhibiting action of EGCG, we investigated the effect of EGCG on brain infarction and the activity of matrix metalloproteinase-9 induced by permanent middle cerebral artery occlusion (pMCAO) in ICR mice. EGCG (40 mg/kg, i.p. $15{\sim}30min$ prior to MCAO) significantly decreased infarction volume at 24 hr after MCAO. GM 6001 (50 mg/kg, i.p. $15{\sim}30min$ prior to MCAO), a MMP inhibitor, also significantly reduced infarction volume. In zymogram, MMP-9 activities began to increase at ipsilateral cortex at 2 hr after MCAO, and the increments of MMP-9 activities were attenuated by EGCG treatment. Western blot for MMP-9 also showed patterns similar to that of zymogram. These findings demonstrate that the anti-ischemic action of EGCG ire mouse focal cerebral ischemia involves its inhibitory effect on MMP-9.

Temporal Characteristics of Cytosolic Translocation of Mitochondrial Proteins in Permanent Distal Middle Cerebral Artery Occlusion Model of Rats

  • Shin, Byoung-Wook;Sung, Jae-Hoon;Hong, Jae-Taek;Son, Byung-Chul;Lee, Sang-Won;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.5
    • /
    • pp.306-313
    • /
    • 2007
  • Objective : In permanent distal middle cerebral artery occlusion [pdMCAO] model of rats, the temporal order of subcellular translocation is not fully understood yet. We studied translocation sequence of cytochrome c and apoptosis inducing factor [AIF] after pdMCAO and patterns of expression. Methods : Twenty-one male rats - with ten minutes, 1, 4, 8, 24 and 48 hours of pdMCAO groups - were enrolled. At core and penumbra area of each cerebral cortex, Western blotting of cytochrome c and AIF were performed using cytosolic fractions and then compared with sham specimens. With 48 hours group, the expression of cytochrome c and AIF was examined with immunofluorescent staining. Results : Compared to sham, the cytosolic translocation of cytochrome c significantly increased at all time points [p<0.05]. As early as 10 min after onset of ischemia, it was increased significantly [p<0.01]. The cytosolic translocation of AIF showed gradual increase with the passage of time and significantly increased 8 hours after [p<0.05]. As late as 24 hours and 48 hours after onset of ischemia, there were increased most significantly [p<0.01]. At penumbra, both proteins failed to show significant increase at all time points. At 48 hours after ischemia, colocalization of cytochrome c and AIF were confirmed. Conclusion : Cytosolic translocation of cytochrome c peaks much earlier than that of AIF in pdMCAO model of rat. Caspase dependent apoptosis activates soon after ischemia and later, it can be reinforced by gradually increasing AIF in ischemic core.

Sungshim-san-mediated Recovery of Cognition and Motor Function in the Severe Rat Stroke, Permanent Middle Cerebral Artery Occlusion Model (성심산(醒心散)의 중대뇌동맥 폐쇄로 유발된 허혈성 뇌손상 백서(白鼠)에 대한 인지 및 운동기능 회복 촉진효과)

  • Lee, Kyung-Seok;Chung, Dae-Kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.26 no.3
    • /
    • pp.319-336
    • /
    • 2015
  • Objectives: The object of this study was to evaluate the cognition and motor function recovery effects of Sungshim-san (SSS), a traditional Korean cardio-protective polyherbal formula in the severe rat stroke, permanent middle cerebral artery occlusion (pMCAO) model. Methods: The experimental animals were divided into 6 groups. SSS aqueous extracts (yield=16.82%; 400, 200 and 100 mg/kg) were administered orally by using Sonde, once daily, for 28 continuous days from 24 hrs post-pMCAO. Donepezil 10 mg/kg, a representative drug for dementia, was used as a reference drug. The body weight changes, infarct/defect sizes, sensorimotor function and cognitive motor behavior were serially monitored. Limb placing and body-swing test for sensorimotor functions were conducted at 1 day before operation (base line), and 1, 3, 7, 14, 21 and 28 days post-pMCAO; and water maze test for the cognitive motor behavior was conducted at 14 and 28 days post-pMCAO, respectively. Results: Focal cerebral cortex infarct and defects due to pMCAO resulted in marked decreases of body weight, disorders of sensorimotor functions and cognitive motor behaviors. However, the pMCAO-related ischemic damages were markedly and dose-dependently inhibited by treatment with SSS 400 and 200 mg/kg, respectively. Donepezil markedly decreased the body weight and gains, as compared with pMCAO control rats; however, SSS 400 and 200 mg/kg favorably ameliorated the pMCAO-induced decreases in body weight and gains. SSS 100 mg/kg treated rats did not show any favorable effects on the pMCAO-related ischemic damages, as compared with pMCAO control rats. Conclusions: The results of the study indicated that oral administration of SSS 400 and 200 mg/kg accelerated cognition and motor function recovery in the rat pMCAO model. The treatment effect was potentially mediated by neuroprotection via the known augmentation of cerebral antioxidant defense system of SSS itself or its individual herbal components. Especially, the overall effects of SSS 200 mg/kg were similar to those of donepezil 10 mg/kg, but less toxic.

Plasticity Associated Changes in Neurophysiological Tests Following Non Invasive Brain Stimulation in Stroke Rat Model (뇌졸중 쥐모델에서 비침습적뇌자극치료 이후 신경생리학적 검사에서 나타난 뇌가소성과 연관된 변화)

  • Sohn, Min Kyun;Song, Hee-Jung;Jee, Sungju
    • Annals of Clinical Neurophysiology
    • /
    • v.16 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • Background: Neuromodulation therapy has been used to an adjunctive treatment promoting motor recovery in stroke patients. The objective of the study was to determine the effect of repetitive transcranial magnetic stimulation (rTMS) on neurobehavioral recovery and evoked potentials in rats with middle cerebral artery occlusion. Methods: Seventy Sprague-Daley rats were induced permanent middle cerebral artery occlusion (MCAO) stroke model and successful stroke rats (n=56) assigned to the rTMS (n=28) and sham (n=28) group. The 10 Hz, high frequency rTMS gave on ipsilesional forepaw motor cortex during 2 weeks in rTMS group. The somatosensory evoked potential (SSEP) and motor evoked potential (MEP) were used to evaluate the electrophysiological changes. Behavioral function of the stroke rat was evaluated by the Rota rod and Garcia test. Results: Forty rats ($N_{rTMS}=20;\;N_{sham}=20$) completed all experimental course. The rTMS group showed better performance than sham group in Rota rod test and Garcia test at day 11 (p<0.05) but not day 18 (p>0.05). The amplitude of MEP and SSEP in rTMS group was larger than sham group at day 18 (p<0.05). Conclusions: These data confirm that the high frequency rTMS on ipsilesional cerebral motor cortex can help the early recovery of motor performance in permanent middle cerebral artery stroke model and it may simultaneously associate with changes in neurophysiological activity in brain.

Neuroprotection by Valproic Acid in Mouse Models of Permanent and Transient Focal Cerebral Ischemia

  • Qian, Yong Ri;Lee, Mu-Jin;Hwang, Shi-Nae;Kook, Ji-Hyun;Kim, Jong-Keun;Bae, Choon-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.435-440
    • /
    • 2010
  • Valproic acid (VPA) is a well-known anti-epileptic and mood stabilizing drug. A growing number of reports demonstrate that VPA is neuroprotective against various insults. Despite intensive efforts to develop new therapeutics for stroke over the past two decades, all treatments have thus far failed to show clinical effect because of treatment-limiting side effects of the drugs. Therefore, a safety-validated drug like VPA would be an attractive candidate if it has neuroprotective effects against ischemic insults. The present study was undertaken to examine whether pre- and post-insult treatments with VPA protect against brain infarct and neurological deficits in mouse transient (tMCAO) and permanent middle cerebral artery occlusion (pMCAO) models. In the tMCAO (2 hr MCAO and 22 hr reperfusion) model, intraperitoneal injection of VPA (300 mg/kg, Lp.) 30 min prior to MCAO significantly reduced the infarct size and the neurological deficit. VPA treatment immediately after reperfusion significantly reduced the infarct size. The administration of VPA at 4 hr after reperfusion failed to reduce the infarct size and the neurological deficit. In the pM CAO model, treatment with VPA (300 mg/kg, i.p.) 30 min prior to MCAO significantly attenuated the infarct size, but did not affect the neurological deficit. Western blot analysis of acetylated H3 and H4 protein levels in extracts from the ischemic cortical area showed that treatment with VPA increased the expression of acetylated H3 and H4 at 2 hrs after MCAO. These results demonstrated that treatment with VPA prior to ischemia attenuated ischemic brain damage in both mice tMCAO and pMCAO models and treatment with VPA immediately after reperfusion reduced the infarct area in the tMCAO model. VPA could therefore be evaluated for clinical use in stroke patients.

Diffusion Tensor-Derived Properties of Benign Oligemia, True "at Risk" Penumbra, and Infarct Core during the First Three Hours of Stroke Onset: A Rat Model

  • Chiu, Fang-Ying;Kuo, Duen-Pang;Chen, Yung-Chieh;Kao, Yu-Chieh;Chung, Hsiao-Wen;Chen, Cheng-Yu
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1161-1171
    • /
    • 2018
  • Objective: The aim of this study was to investigate diffusion tensor (DT) imaging-derived properties of benign oligemia, true "at risk" penumbra (TP), and the infarct core (IC) during the first 3 hours of stroke onset. Materials and Methods: The study was approved by the local animal care and use committee. DT imaging data were obtained from 14 rats after permanent middle cerebral artery occlusion (pMCAO) using a 7T magnetic resonance scanner (Bruker) in room air. Relative cerebral blood flow and apparent diffusion coefficient (ADC) maps were generated to define oligemia, TP, IC, and normal tissue (NT) every 30 minutes up to 3 hours. Relative fractional anisotropy (rFA), pure anisotropy (rq), diffusion magnitude (rL), ADC (rADC), axial diffusivity (rAD), and radial diffusivity (rRD) values were derived by comparison with the contralateral normal brain. Results: The mean volume of oligemia was $24.7{\pm}14.1mm^3$, that of TP was $81.3{\pm}62.6mm^3$, and that of IC was $123.0{\pm}85.2mm^3$ at 30 minutes after pMCAO. rFA showed an initial paradoxical 10% increase in IC and TP, and declined afterward. The rq, rL, rADC, rAD, and rRD showed an initial discrepant decrease in IC (from -24% to -36%) as compared with TP (from -7% to -13%). Significant differences (p < 0.05) in metrics, except rFA, were found between tissue subtypes in the first 2.5 hours. The rq demonstrated the best overall performance in discriminating TP from IC (accuracy = 92.6%, area under curve = 0.93) and the optimal cutoff value was -33.90%. The metric values for oligemia and NT remained similar at all time points. Conclusion: Benign oligemia is small and remains microstructurally normal under pMCAO. TP and IC show a distinct evolution of DT-derived properties within the first 3 hours of stroke onset, and are thus potentially useful in predicting the fate of ischemic brain.