• Title/Summary/Keyword: Permanent magnet coupling

Search Result 59, Processing Time 0.039 seconds

Inductance Analysis of Interior Permanent Magnet Synchronous Motor Considering Cross-Coupling Effect (교차 결합 현상을 고려한 매입형 영구자석 전동기의 인덕턴스 특성 해석)

  • Kwak, Sang-Yeop;Kim, Jae-Kwang;Jung, Hyun-Kyo;Lee, Sang-Yub
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.189-195
    • /
    • 2006
  • In this paper, the inductance characteristics of interior permanent magnet synchronous motor (IPMSM) considering cross-coupling effect is analyzed. It is known that the IPMSM has it's operating point at the saturated region. So the cross-coupling effect exists, therefore cross-coupling inductance exists. With the application of Fixed Permeability Method (FPM), we can obtain more exact inductance characteristics of IPMSM. In this paper, a novel method based on the FPM is proposed, which can consider the cross-coupling effect. And the cross-coupling inductance which is the analysis result is shown. Finally, the validity of proposed method is verified by the comparison with the experimental result.

Design and Analysis of Permanent Magnet Synchronous Generator Considering Magnetically Coupled Turbine-Rotor System

  • Kim, Byung-Ok;Choi, Bum-Seog;Kim, Jeong-Man;Cho, Han-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1002-1006
    • /
    • 2015
  • In this paper, design and analysis of permanent magnet synchronous generator for ocean thermal energy conversion (OTEC) considering magnetically coupled turbine-rotor system is discussed. In particular, the rotor dynamics considering bearing span and journal shaft diameter is highlighted. The two topologies of permanent magnet synchronous generator with magnetic coupling are employed for comparison of computed rotor dynamics and generating characteristics. The analysis results show that the critical speed of the turbine-rotor system is higher when the rotor is coupled by magnetically coupling. Finally, the experimental results confirmed the validity of the proposed design and analysis scheme and successful development.

Reliability Evaluation of a Permanent Magnetic Coupling (영구자석 커플링의 신뢰성 향상)

  • Jung, Dong Soo
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.236-242
    • /
    • 2014
  • Since permanent magnet coupling transfers power by magnetic force without contact, it has little shock, vibration, noise. In case of overload, it protects a pump or a motor which is relatively important by slipping internally. In this study, failure analysis and test evaluation on the permanent magnet coupling have been proposed and the process that reliability of the product improves through design improvement has been presented. And failure cause of typical failure case has been investigated and improvement plan has been presented. Finally, reliability improvement is established by analysis of the test results of before and after acceleration test.

A Permanent-Magnet Linear Motor Shape Optimal Design Using Coupling Particles Swarm Optimization

  • Baatar, Nyambayar;Pham, Minh-Trien;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.788_789
    • /
    • 2009
  • The cogging force of a permanent-magnet linear motor is a major component of the detent force, but unfortunately makes a ripple in the thrust force and induces undesired vibration and acoustic noise. In this paper, Coupling Particles Swarm Optimization is applied to optimization the shape of permanent magnet linear motor by minimizing the undesired vibration and acoustic noise in the thrust force and also considering the maximum thrust force. The result shows that the 9-pole 10-slot PMLM removes almost of the cogging force while giving a big thrust force.

  • PDF

Eddy Current Loss Analysis in Radial Flux Type Synchronous Permanent Magnet Coupling using Space Harmonic Methods (공간고조파법을 이용한 반경방향 영구자석을 갖는 자기커플링의 와전류 손실 해석)

  • Min, Kyoung-Chul;Kang, Han-Bit;Park, Min-Gyu;Cho, Han-Wook;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1377-1383
    • /
    • 2014
  • This paper deals with eddy current loss of magnetic coupling with radial permanent magnet (PM) using analytical method such as a space harmonic method. Superposition of two kinds analysis model is used to analyze eddy current loss induced in inner PM and outer PM of magnetic coupling. When the eddy current is induced, the environmental temperature increases, and the permanent magnet(PM) characteristics are degraded because the performance of PM is greatly influenced by temperature rise. Hence, the calculation of eddy current loss becomes an important factor in the magnetic coupling. In order to analyze eddy current loss, first, on the basis of the magnetic vector potential and two-dimensional(2-D) polar-coordinate system, the magnetic field solutions of the radial magnetized PM are obtained. And we obtain the analytical solutions for the eddy current density produced by permanent magnet. Lastly, analytical solutions for eddy current loss are derived by using equivalent, electrical resistance calculated from magnet volume and analytical solution for eddy current density. This analytical results are validated by comparing with the 2-D finite element analysis (FEA).

Characteristics Analysis of Radially Magnetized Tubular type Magnetic Coupling (반경 방향으로 자화된 Tubular 타입 자기 커플링의 특성 해석)

  • Kim, Chang-Woo;Jung, Kyoung-Hun;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1551-1557
    • /
    • 2015
  • Magnetic coupling is used where required high reliability. because magnetic coupling's durability is stronger than mechanical coupling's durability. This paper shows the characteristics of radially magnetized tubular type magnetic coupling by using Analytical method such as space harmonic method. Analytical method was used, to find force characteristics. First, on the basis of the magnetic vector potential and two-dimensional(2-D) polar-coordinate system, the magnetic field solutions of the radially magnetized permanent magnet are obtained. And we obtain the analytical solutions for the flux density produced by permanent magnet. Finally, we can calculate the force by using the Maxwell stress tensor. And then, Finite element method(FEM) is used to validate force characteristics.

Thermal Analysis of High Density Permanent Magnet Synchronous Motor Based on Multi Physical Domain Coupling Simulation

  • Chen, ShiJun;Zhang, Qi;He, Biao;Huang, SuRong;Hui, Dou-Dou
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • In order to meet the thermal performance analysis accuracy requirements of high density permanent magnet synchronous motor (PMSM), a method of multi physical domain coupling thermal analysis based on control circuit, electromagnetic and thermal is presented. The circuit, electromagnetic, fluid, temperature and other physical domain are integrated and the temperature rise calculation method that considers the harmonic loss on the frequency conversion control as well as the loss non-uniformly distributed and directly mapped to the temperature field is closer to the actual situation. The key is to obtain the motor parameters, the realization of the vector control circuit and the accurate calculation and mapping of the loss. Taking a 48 slots 8 poles high density PMSM as an example, the temperature rise distribution of the key components is simulated, and the experimental platform is built. The temperature of the key components of the prototype machine is tested, which is in agreement with the simulation results. The validity and accuracy of the multi physical domain coupling thermal analysis method are verified.

Force Characteristic Analysis of Permanent Magnet Linear Coupling with Vertical Magnetized using an Analytical Magnetic Field Calculations (해석적 방법을 이용한 수직방향으로 자화된 영구자석 선형커플링의 힘 특성 해석)

  • Lee, Jae-Hyun;Choi, Jang-Young
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.742-743
    • /
    • 2015
  • Magnetic couplings are do not require any mechanical contact with the power transmitted to the secondary side according to the primary side. For this reason, well-suited for isolated systems such as vacuums or high pressure. So, this paper presents the force characteristic analysis of the permanent magnet (PM) linear coupling with vertical magnetized using an analytical magnetic field calculations. Based on the definition of governing equations and magnetic vector potential, we obtained the analytical solutions according to the boundary condition for each of the regions. Also, we derived from the force generated in the permanent magnet surface using the Maxwell stress tensor. The analytical results are proved the validity by comparing to the finite element method (FEM).

  • PDF

Magnetic Characteristic Analysis of Axial Flux Permanent Magnet Coupling based on Analytical method according to overload (해석적 방법을 이용한 축 방향 자속 영구자석 커플링의 과부하 자계특성해석)

  • Jang, Gang-Hyeon;Koo, Min-Mo;Choi, Jang-Young
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.744-745
    • /
    • 2015
  • This paper deals with magnetic characteristic analysis of axial flux permanent magnet coupling according to overload using analytical method. When magnet coupling has a slip, the eddy current induced in PM with conductivity. This eddy current make a distorted flux density. In this paper, we analyze the distorted flux density. The analytical results are validated extensively by comparing with 3d finite element analysis.

  • PDF

The Influence of Magnetization Pattern on the Performance of Permanent Magnet Eddy Current Couplings and Brakes

  • Cha, Hyun-Rok;Cho, Han-Wook;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.379-384
    • /
    • 2008
  • This paper examines permanent magnet eddy current couplings and brakes. Specifically, the effect of permanent magnet magnetization patterns on the magnetic field and force production is investigated. The eddy current couplings and brakes employ high energy-product neodymium-iron-boron (NdFeB) permanent magnets that act on iron-backed copper drums to provide torque transfer from motor to load without mechanical contact. A 2-dimensional finite element modeling is performed to predict the electromagnetic behavior and the torque-speed characteristics of permanent magnet type eddy current couplings and brakes under constant speed operation.