• Title/Summary/Keyword: Permanent magnet Synchronous motor

Search Result 1,222, Processing Time 0.024 seconds

A Study on Driving Algorithm of Single-phase PMSM based on Proportional Resonant Current Controller (비례공진 전류제어기 기반의 단상 영구자석 동기전동기 운전에 관한 연구)

  • Seong, Uiseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.115-120
    • /
    • 2021
  • In this paper, an operating algorithm for single-phase permanent magnet synchronous motor based on PR current controller is proposed. In general, an asymmetric gap may occur depending on the shape of the rotor of single-phase PMSM, and this causes noise and vibration during high-speed operation. Therefore, in this paper, an operating algorithm for a single-phase PMSM usihng a proportional resonant current conrtoller with excellent control stability was proposed. Proportional resonant current controller has on steady state error is relatevly robust against distortion. Also, steady state error of AC input can be eleminated without complicated calculation process. The validity and availability of the proposed algorithm are verified through the experiment.

Tracking Control of IPMSM using the Active Disturbance Rejection Control (매입형 영구자석 동기전동기의 능동외란제거제어를 이용한 추종제어)

  • Jeon, Yong-Ho;Chae, Seong-Byeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.859-866
    • /
    • 2022
  • Active disturbance rejection control is a method in which the disturbance is removed from the controller by estimating the state variable using the Luenberger observer. The Luenberger observer is estimated by defining a nonlinear term including disturbance with constant characteristics in a steady state as a state variable. It can be shown that the speed tracking performance is improved by compensating the estimated state variable to the PI controller and the IP controller. The disturbance removal performance of the tracking control can be confirmed by observing that the estimated state error is within 1.9 [%] in the case of load fluctuation and the steady-state state tracking error converges to zero.

Shape Optimization of PMLSM Stator for Reduce Thrust Ripple Components Using DOE (DOE 활용 추력리플성분 저감을 위한 PMLSM 고정자 형상 최적화)

  • Kwon, Jun Hwan;Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.38-43
    • /
    • 2021
  • Permanent magnet linear synchronous motor (PMLSM) is suitable for use in cleanroom environments and have advantages such as high speed, high thrust, and high precision. If the stators are arranged in the entire moving path of the mover, there is a problem in that the installation cost increases. To solve this problem, discontinuous armature arrangement PMLSM has been proposed. In this case, the mover receives a greater detent force in the section where the stator is not arranged. When a large detent force occurs, it appears as a ripple component of the thrust during PMLSM operation. If the shape of the stator is changed to reduce the detent force, the characteristics of the back EMF are changed. Therefore, in this paper, the detent force and the harmonic components of back EMF were reduced through multi-purpose shape optimization. To this end, the FEA model was constructed and main effect analysis was performed on the major shape variables affecting each objective function. Then, the optimal shape that minimizes the objective function was derived through the response surface analysis method.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

High Performance Speed Control of IPMSM with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM의 고성능 속도제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using learning mechanism-fuzzy neural network(LM-FNN) and ANN(artificial neural network) control. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility md numerical processing capability. Also, this paper proposes speed control of IPMSM using LM-FNN and estimation of speed using artificial neural network controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. 'The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Analysis results to verify the effectiveness of the new hybrid intelligent control proposed in this paper.

The Control Method of In-Wheel PMSM for Electric Scooter using Speed Observer (속도 관측기를 이용한 전기스쿠터용 IN-WHEEL 영구자석 동기 전동기의 제어 방법)

  • Son, Tae-Sik;Lee, Yong-Kyun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This paper presents the torque control algorithm of a permanent magnet synchronous motor(PMSM) for an electric scooter. The volume of the in-wheel type motor is restricted due to the complicated mechanical structure in wheel of an electric scooter, so the hall sensors instead of resolver and encoder for the rotor position sensors are installed. In this paper, the rotor speed and position are estimated from the speed estimator for vector control of a PMSM with hall sensors. The motor starts to rotate at standstill in BLDC mode with 120 degree conduction. After start up, the operating mode is changed to the vector control with maximum torque per ampere(MTPA) operation at low speeds and flux weakening control at high speeds. The performance of the proposed control algorithm is verified through the experiment in the electric scooter.

Vector Control of SPMSM Using MATLAB/SIMULINK & dSPACE 1104 System (MATLAB/SIMULINK와 dSPACE 1104 시스템을 이용한 표면 부착형 영구자석 동기전동기 벡터제어)

  • Lee, Yong-Seok;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.317-326
    • /
    • 2008
  • This paper presents a vector control implementation for SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) using dSPACE 1104 system and MATLAB/SIMULINK. SPMSM can be treated as a DC motor provided that currents of flux and torque component are controlled independently using vector control. Therefore various control algorithms for conventional DC motor control can be adopted to SPMSM. The system is designed to improve set-point tracking capability, fast response, and accuracy In This paper, d-q equivalent modeling of PMSM is derived based on vector control theory. PI controller is used for speed control and decoupling PI controller is used for current control. For the implementation of high performance vector control system, dSPACE 1104 system is used. Experiments were carried out to examine validity of the proposed vector control implementation.

Efficiency Optimization Control of IPMSM Drive using Multi AFLC (다중 AFLC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.279-287
    • /
    • 2010
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning controller(AFLC). In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The design of the current based on adaptive fuzzy control using model reference and the estimation of the speed based on neural network using ANN controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC. Also, this paper proposes speed control of IPMSM using AFLC1, current control of AFLC2 and AFLC3, and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled AFLC, the operating characteristics controlled by efficiency optimization control are examined in detail.

Proportional Resonant Feedforward Contrl Algorithm for Speed Ripple Reduction of 3-phase SPMSM (3상 영구자석 동기전동기의 속도 맥동 저감을 위한 비례공진 전향보상 제어 알고리즘)

  • Lee, Seon-Yeong;Hwang, Seon-Hwan;Kim, Gyung-Yub;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1104-1108
    • /
    • 2020
  • This paper propose a variable proportional resonant feedforward algorithm for reducing the speed ripple of a three-phase permanent magnet synchronous motor. In general, the torque ripples can be generated by electrical pulsation due to current measurement errors and dead time and mechanical pulsation because of rotor eccentricity and eccentric load. These torque pulsations can cause speed pulsations of the motor and degrade the operating performance of the motor drive system. Therefore, in this paper, the factors of the speed ripple is analyzed and an algorithm to reduce the speed ripple is proposed. The proposed algorithm applied a variable proportional resonant controller in order to reduce the specific operating frequency included in the speed pulsation, and utilized a feedforward compensation controller structure to perform the compensation operation. The proposed algorithm is verified through various experiments.

Experimental verification of inverter's optimal controller for driving 150kW SPMSM of EGR blower of Green-ships (친환경 선박 EGR 블로워용 150kW SPMSM 구동 인버터 최적제어기의 실험적 검증)

  • Sehwan, Kim;Yeonwoo, Kim;Minjae, Kim;Uihyung, Yi;Sungwon, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.596-601
    • /
    • 2022
  • The application of the EGR system is increasing according to the recent trend of conversion to green-ships. EGR blower, one of the core parts of the EGR, consists of aerodynamic system and e-motor and inverter and etc. For the e-motor, a permanent magnet type synchronous motor with high energy density and excellent efficiency is applied recently. Small and medium-sized enterprises trying to develop the e-motors, however, for marine inverters mostly developed by global advanced companies due to the rigid classification certification and technical difficulties. One of disadvantage of universal inverters is that when optimal control fails, it is difficult to find the cause from user's point of view. Therefore, in this study, optimal controllers(Current vector contol and Tracking observer) for SPMSM for EGR blower was designed and verified to analyze the causes of failure of optimal control of universal inverter.