• 제목/요약/키워드: Permanent brain ischemic stroke

검색결과 6건 처리시간 0.016초

Lysophosphatidic Acid Receptor 1 Plays a Pathogenic Role in Permanent Brain Ischemic Stroke by Modulating Neuroinflammatory Responses

  • Supriya Tiwari;Nikita Basnet;Ji Woong Choi
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.319-328
    • /
    • 2024
  • Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.

허혈성 뇌졸중 유발 백서에서 수중운동이 하지근 및 대뇌의 HSP 70 발현에 미치는 영향 (Effects of Swimming Exercise on Hind-Limb Muscles and HSP 70 Expression in the Ischemic Stroke Model of Rats)

  • 김기도;김은정;천진성;김경윤;김계엽;유영대
    • 한국전문물리치료학회지
    • /
    • 제13권3호
    • /
    • pp.57-66
    • /
    • 2006
  • Ischemic stroke results from a transient or permanent reduction in cerebral blood flow that is restricted to the territory of a major brain artery. Thus, this study was performed to examine (1) the effects of swimming exercise on the improvement of muscle atrophy, and (2) exercise and HSP 70 expression in an ischemic stroke model induced by middle cerebral artery occlusion. The results of this study were as follows: One week after ischemic stroke was induced, changes appeared in the muscle weight of the gastrocnemius muscle due to muscle atrophy in the affected side. Group II showed statistically significant difference from group III eight weeks after ischemic stroke was induced. (p<.05). One week and eight weeks after ischemic stroke was induced there was significant decrease in the relative muscle weight of the gastrocnemius muscle in each group except Group IV, while there was statistically significant increase in group II eight weeks after ischemic stroke was induced, compared to group III (p<.05). For neurologic exercise behavior tests, Group II generally had the highest score, compared to other groups. In immunohistochemical observations, Group II showed a decrease in HSP 70. The above results suggest that swimming exercise improved muscle atrophy, changed the HSP 70 expression of ischemic stroke in rats, and contributed to the improvement of exercise function.

  • PDF

Neuroprotection by Valproic Acid in Mouse Models of Permanent and Transient Focal Cerebral Ischemia

  • Qian, Yong Ri;Lee, Mu-Jin;Hwang, Shi-Nae;Kook, Ji-Hyun;Kim, Jong-Keun;Bae, Choon-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권6호
    • /
    • pp.435-440
    • /
    • 2010
  • Valproic acid (VPA) is a well-known anti-epileptic and mood stabilizing drug. A growing number of reports demonstrate that VPA is neuroprotective against various insults. Despite intensive efforts to develop new therapeutics for stroke over the past two decades, all treatments have thus far failed to show clinical effect because of treatment-limiting side effects of the drugs. Therefore, a safety-validated drug like VPA would be an attractive candidate if it has neuroprotective effects against ischemic insults. The present study was undertaken to examine whether pre- and post-insult treatments with VPA protect against brain infarct and neurological deficits in mouse transient (tMCAO) and permanent middle cerebral artery occlusion (pMCAO) models. In the tMCAO (2 hr MCAO and 22 hr reperfusion) model, intraperitoneal injection of VPA (300 mg/kg, Lp.) 30 min prior to MCAO significantly reduced the infarct size and the neurological deficit. VPA treatment immediately after reperfusion significantly reduced the infarct size. The administration of VPA at 4 hr after reperfusion failed to reduce the infarct size and the neurological deficit. In the pM CAO model, treatment with VPA (300 mg/kg, i.p.) 30 min prior to MCAO significantly attenuated the infarct size, but did not affect the neurological deficit. Western blot analysis of acetylated H3 and H4 protein levels in extracts from the ischemic cortical area showed that treatment with VPA increased the expression of acetylated H3 and H4 at 2 hrs after MCAO. These results demonstrated that treatment with VPA prior to ischemia attenuated ischemic brain damage in both mice tMCAO and pMCAO models and treatment with VPA immediately after reperfusion reduced the infarct area in the tMCAO model. VPA could therefore be evaluated for clinical use in stroke patients.

Chlorogenic acid alleviates the reduction of Akt and Bad phosphorylation and of phospho-Bad and 14-3-3 binding in an animal model of stroke

  • Murad-Ali, Shah;Ju-Bin, Kang;Myeong-Ok, Kim;Phil-Ok, Koh
    • Journal of Veterinary Science
    • /
    • 제23권6호
    • /
    • pp.84.1-84.15
    • /
    • 2022
  • Background: Stroke is caused by disruption of blood supply and results in permanent disabilities as well as death. Chlorogenic acid is a phenolic compound found in various fruits and coffee and exerts antioxidant, anti-inflammatory, and anti-apoptotic effects. Objectives: The purpose of this study was to investigate whether chlorogenic acid regulates the PI3K-Akt-Bad signaling pathway in middle cerebral artery occlusion (MCAO)-induced damage. Methods: Chlorogenic acid (30 mg/kg) or vehicle was administered peritoneally to adult male rats 2 h after MCAO surgery, and animals were sacrificed 24 h after MCAO surgery. Neurobehavioral tests were performed, and brain tissues were isolated. The cerebral cortex was collected for Western blot and immunoprecipitation analyses. Results: MCAO damage caused severe neurobehavioral disorders and chlorogenic acid improved the neurological disorders. Chlorogenic acid alleviated the MCAO-induced histopathological changes and decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Furthermore, MCAO-induced damage reduced the expression of phospho-PDK1, phospho-Akt, and phospho-Bad, which was alleviated with administration of chlorogenic acid. The interaction between phospho-Bad and 14-3-3 levels was reduced in MCAO animals, which was attenuated by chlorogenic acid treatment. In addition, chlorogenic acid alleviated the increase of cytochrome c and caspase-3 expression caused by MCAO damage. Conclusions: The results of the present study showed that chlorogenic acid activates phospho-Akt and phospho-Bad and promotes the interaction between phospho-Bad and 14-3-3 during MCAO damage. In conclusion, chlorogenic acid exerts neuroprotective effects by activating the Akt-Bad signaling pathway and maintaining the interaction between phospho-Bad and 14-3-3 in ischemic stroke model.

Neurotrophic Actions of Ginsenoside Rbi, Peptide Growth Factors and Cytokines

  • Masahiro Sakanaka;Wen, Tong-Chun;Kohji Sato;Zhang, Bo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.21-30
    • /
    • 1998
  • Ginseng root has been considered to prevent neuronal degeneration associated with brain ischemia, but experimental proof in support of this speculation is limited. Moreover, few studies have compared the neuroprotective actions of ginseng ingredients with those of peptide growth factors and cytokines isf vivo. Using a gerbil forebrain ischemia model, we demonstrated that the oral administration of red ginseng powder before an ischemic insult prevents delayed neuronal death in the hippocampal CAI field and that a neuroprotective molecule within red ginseng powder is ginsenoside Rbl. The neurotrophic effect of ginsenoside Rbl, when examined in the gerbil ischemia model and in neuronal cultures was as potent as or more potent than the effects of epidermal growth factor, ciliary neurotrophic factor, erythropoietin, prosaposin, interleukin-6 and interleukin-3. Besides the protection of hippocampal CAI neurons against brain ischemia/repercussion injuries, ginsenoside Rbl was shown to prevent place navigation disability, cortical infarction and secondary thalamic degeneration in stroke-prone spontaneous hypertensive rats with permanent occlusion of the unilateral middle cerebral artery distal to the striate branches. These findings may validate the empirical use of ginseng root for the treatment of cerebrovascular diseases

  • PDF

Diffusion Tensor-Derived Properties of Benign Oligemia, True "at Risk" Penumbra, and Infarct Core during the First Three Hours of Stroke Onset: A Rat Model

  • Chiu, Fang-Ying;Kuo, Duen-Pang;Chen, Yung-Chieh;Kao, Yu-Chieh;Chung, Hsiao-Wen;Chen, Cheng-Yu
    • Korean Journal of Radiology
    • /
    • 제19권6호
    • /
    • pp.1161-1171
    • /
    • 2018
  • Objective: The aim of this study was to investigate diffusion tensor (DT) imaging-derived properties of benign oligemia, true "at risk" penumbra (TP), and the infarct core (IC) during the first 3 hours of stroke onset. Materials and Methods: The study was approved by the local animal care and use committee. DT imaging data were obtained from 14 rats after permanent middle cerebral artery occlusion (pMCAO) using a 7T magnetic resonance scanner (Bruker) in room air. Relative cerebral blood flow and apparent diffusion coefficient (ADC) maps were generated to define oligemia, TP, IC, and normal tissue (NT) every 30 minutes up to 3 hours. Relative fractional anisotropy (rFA), pure anisotropy (rq), diffusion magnitude (rL), ADC (rADC), axial diffusivity (rAD), and radial diffusivity (rRD) values were derived by comparison with the contralateral normal brain. Results: The mean volume of oligemia was $24.7{\pm}14.1mm^3$, that of TP was $81.3{\pm}62.6mm^3$, and that of IC was $123.0{\pm}85.2mm^3$ at 30 minutes after pMCAO. rFA showed an initial paradoxical 10% increase in IC and TP, and declined afterward. The rq, rL, rADC, rAD, and rRD showed an initial discrepant decrease in IC (from -24% to -36%) as compared with TP (from -7% to -13%). Significant differences (p < 0.05) in metrics, except rFA, were found between tissue subtypes in the first 2.5 hours. The rq demonstrated the best overall performance in discriminating TP from IC (accuracy = 92.6%, area under curve = 0.93) and the optimal cutoff value was -33.90%. The metric values for oligemia and NT remained similar at all time points. Conclusion: Benign oligemia is small and remains microstructurally normal under pMCAO. TP and IC show a distinct evolution of DT-derived properties within the first 3 hours of stroke onset, and are thus potentially useful in predicting the fate of ischemic brain.