• Title/Summary/Keyword: Permanent Magnetization

Search Result 139, Processing Time 0.024 seconds

Preisach Model for Analyzing the Permanent Magnet System with Hysteresis Characteristics (영구자석기기의 히스테리시스 특성해석을 위한 Preisach 모델)

  • 박관수;한송엽;이기식;정현교
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.2
    • /
    • pp.140-144
    • /
    • 1992
  • Magnetization of permanent magnet in the strong magnetic field is changeable. So the change of magnetization must be considered for the accurate analysis of the system with permanent magnets. But the hysteresis characteristice of permanent magnet cannot be represented in simple mathematical form. In this paper, Preisach model combined with finite element method which can describe the hysteresis phenomena is applied to analyze the permanent magnet system. To validate the method, it is applied to the force calculations between two magnets with different coercivities and the numerical results are compared with measured data.

  • PDF

M-Zn (M = Sb, V, and Nb) Substituted Strontium Hexaferrites with Enhanced Saturation Magnetization for Permanent Magnet Applications

  • Sapoletova, Nina;Kushnir, Sergey;Ahn, Kyunghan;An, Sung Yong;Choi, Moonhee;Kim, Jae Yeong;Choi, Changhak;Wi, Sungkwon
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.315-321
    • /
    • 2016
  • M-Zn (M = Sb, V, Nb) substituted M-type strontium hexaferrites were prepared by a ceramic method. The phase composition, morphology and magnetic properties were studied by x-ray diffractometry, scanning electron microscopy and vibrating sample magnetometry. Saturation magnetization increases with a substitution up to 75.0 emu/g (2.5 % higher compared to unsubstituted hexaferrite) and then decreases with a further substitution. A coercive field of substituted hexaferrite powders with highest saturation magnetization is more than 3 kOe. Substituted strontium hexaferrite powders prepared in this work are a rare example of high $M_S$ compositions without doping rare-earth elements and would be a promising candidate for a permanent magnet application.

Electromagnetic Force Analysis of BLDC Motor for Hard Disk Drive (하드디스크 구동용 BLDC 전동기의 전자력 해석에 관한 연구)

  • Park, Seung-Chan;Yun, Tae-Ho;Gwon, Byeong-Il;Yun, Hui-Su;Won, Seong-Hong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.9
    • /
    • pp.476-483
    • /
    • 1999
  • In this paper, electromagnetic forces acting on the rotor surface of a BLDC motor for hard disk drive are calculated by the finite element field analysis. The frequency characteristics of torque ripple, local force and unbalanced magnetic force as a source of mechanical vibration area analyzed. Ring-type permanent magnets for the brushless DC motor are apt to have different magnetization levels at each pole because of the unbalanced air gap between the magnet surface and the magnetizer fixture during the multi-poles magnetizing process. This paper discusses the effect of the unsymmetric magnetization distribution in the permanent magnet on the brushless DC motor performances. As a result, the unbalanced magnetic force acting on the rotor surface and the torque ripple are examined for the motor with an unsymmetric magnetization distribution, and compared with those of an ideally symmetric motor.

  • PDF

Comparative Study of Flux Regulation Methods for Hybrid Permanent Magnet Axial Field Flux-switching Memory Machines

  • Yang, Gongde;Fu, Xinghe;Lin, Mingyao;Li, Nian;Li, Hao
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.158-167
    • /
    • 2019
  • This research comparatively studies three kinds of flux regulation methods, namely, stored capacitor discharge pulse (SCDP), constant current source pulse (CCSP), and quantitative flux regulation pulse (QFRP), which are used for hybrid permanent magnet (PM) axial field flux-switching memory machines (HPM-AFFSMMs). Through an analysis of the operation principle and the series hybrid PM flux regulation mechanism of the objective machine, the circuit topologies and flux regulation process of these flux regulation methods are addressed in detail. On the basis of a simulation, the flux regulation characteristics of the researched machine during the magnetization and demagnetization processes are comparatively evaluated. Then, machine performance, including back EMF, direct and quadrature axis inductances, and magnetization and demagnetization characteristics, is quantitatively investigated. Results show that the QFRP enables the HPM-AFFSMM to achieve a less harmonic component of back EMF by approximately 7.28% and 7.97% at the magnetization and demagnetization states, respectively, and a more complete magnetization process than the SCDP and CCSP.

Finite Element Analysis of a Inner-Rotor Type BLDC Motor without Rotor Core (회전자 철심이 없는 내전형 BLDC 모터의 유한요소 해석)

  • Chang, Hong-Soon;Jung, In-Soung;Baek, Soo-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.652-658
    • /
    • 2000
  • In many cases, ferrite magnets of ferrite bonded magnets used in inner-rotor type small brushless DC(BLDC) motors do not have rotor core. The magnetization directions of permanent magnets do not have only parallel or radial direction. In this case, the characteristics of magnets are different from cored type ones which have uniform magnetization direction. In this paper, the magnetization directions and intensities of a ferrite magnet and a ferrite bonded magnet are analyzed by finite element analysis for magnetization procedure. The characteristics of inner-rotor type BLDC motor are analyzed by using the analyzed results. The validity of the method is verified by comparing the analyzed results with measured ones.

  • PDF

Quantitative Approach to the Magnetic Force of a Cylindrical Permanent Magnet Acting on a Ferromagnetic Object (원형 막대자석이 강자성 물체에 작용하는 자기력에 대한 정량적 접근)

  • Hyun, Donggeul;Shin, Aekyung
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1249-1261
    • /
    • 2018
  • The quantitative representation for the magnetic force of a cylindrical permanent magnet acting on a ferromagnetic cylindrical object was derived on the basis of magnetization theories, and the Gilbert and Ampere models of magnetism. The magnetic force derived in this study is directly proportional to the remanent magnetization magnetic field, the cross-sectional area of the permanent magnet, the saturation magnetic field, and the cross-sectional area of the ferromagnetic object and is inversely proportional to the square of the quantity related to the distance between the permanent magnet and the ferromagnetic object. The magnetic forces of an AlNiCoV cylindrical permanent magnet and a Ferrite cylindrical permanent magnet, both with a radius of 0.4 cm and a length of 7 cm, acting on ferromagnetic objects at distances farther than the radius were calculated to be less than 3.6711 N and 0.1857 N, respectively.

A Study on the Characteristic Analysis of Brushless DC Motor Using FEM (유한요소법을 이용한 브러시레스 DC 모터의 특성 해석에 관한 연구)

  • Cheong, Shin-Young;Song, Yu-Seok;Lee, Ju;Jang, Seok-Joong;Park, Geon-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.920-922
    • /
    • 2002
  • This paper investigates the cogging torque reduction in a brushless DC(BLDC) motor having an inner-rotor with surface-mounted segment-type permanent magnets. The kind of magnets for the BLDC motor could have different waveforms of magnetization such as square, trapezoidal and sinusoidal form. This paper discusses the effect of the unsymmetrical magnetization distribution in the segment-type permanent magnet, which is able to obtain through a segment structure that the number of poles per segments is 2 ($N_p/N_s$), on the cogging torque and EMF waveform. Where the existing magnetizer fixture for the square-type magnetization is used to magnetize the magnets in two segment structures of $N_p/N_s$ = 1 and 2. The effectiveness of the proposed designs had been confirmed by comparing cogging torque, and EMF waveform between conventional and new models which are analyzed by Finite Element Method (FEM).

  • PDF

Analysis on Thrust Characteristics of Slotless Iron-Cored PMLSM According to PM Magnetization Patterns

  • Jang Seok-Myeong;You Dae-Joon;Lee Sung-Ho;Jang Won-Bum
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.27-33
    • /
    • 2005
  • The development of modern high-energy magnet materials has allowed the replacement of field coils in many different types of electromagnetic energy conversion machines. As well, the linear synchronous motor has recently been proposed for linear motion with high efficiency and thrust. Thus, this paper presents an analytical solution for the high thrust and cost reduction of the Iron-Cored Permanent Magnet Linear Synchronous Motor (PMLSM) considering magnetization arrays and geometry. Hence, the superior utilization points in each of the magnetization arrays are provided by the height ratio of the magnet/air-gap and magnet/winding coil, etc. In formulation, the space harmonic method in analytical solutions and the generalized 2-D tensor finite element analysis can be used to evaluate force components in magneto static devices including the magnetostrictive phenomenon.