Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.3.315

M-Zn (M = Sb, V, and Nb) Substituted Strontium Hexaferrites with Enhanced Saturation Magnetization for Permanent Magnet Applications  

Sapoletova, Nina (Corporate R&D Institute, Samsung Electro-Mechanics)
Kushnir, Sergey (Corporate R&D Institute, Samsung Electro-Mechanics)
Ahn, Kyunghan (Corporate R&D Institute, Samsung Electro-Mechanics)
An, Sung Yong (Corporate R&D Institute, Samsung Electro-Mechanics)
Choi, Moonhee (Corporate R&D Institute, Samsung Electro-Mechanics)
Kim, Jae Yeong (Corporate R&D Institute, Samsung Electro-Mechanics)
Choi, Changhak (Corporate R&D Institute, Samsung Electro-Mechanics)
Wi, Sungkwon (Corporate R&D Institute, Samsung Electro-Mechanics)
Publication Information
Abstract
M-Zn (M = Sb, V, Nb) substituted M-type strontium hexaferrites were prepared by a ceramic method. The phase composition, morphology and magnetic properties were studied by x-ray diffractometry, scanning electron microscopy and vibrating sample magnetometry. Saturation magnetization increases with a substitution up to 75.0 emu/g (2.5 % higher compared to unsubstituted hexaferrite) and then decreases with a further substitution. A coercive field of substituted hexaferrite powders with highest saturation magnetization is more than 3 kOe. Substituted strontium hexaferrite powders prepared in this work are a rare example of high $M_S$ compositions without doping rare-earth elements and would be a promising candidate for a permanent magnet application.
Keywords
strontium hexaferrite; substitution saturation magnetization; zinc; antimony; magnetic properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. D. Coey, J. Magn. Magn. Mater. 248, 441 (2002).   DOI
2 R. C. Pullar, Prog. Mater. Sci. 57, 1191 (2012).   DOI
3 H. Taguchi, T. Takeishi, K. Suwa, K. Masuzawa, and Y. Minachi, J. Phys. IV France 7, C1-311 (1997).   DOI
4 H. Taguchi, J. Phys. IV France 7, C1-299 (1997).   DOI
5 X. Liu, J. Bai, F. Wei, H. Xu, Z. Yang, S. N. Piramanayagam, S. Takei, A. Morisako, and M. Matsumoto, J. Appl. Phys. 87, 2503 (2000).   DOI
6 S. W. Lee, S. Y. An, I. B. Shim, and C. S. Kim, J. Magn. Magn. Mater. 290, 231 (2005).
7 O. Kubo and E. Ogawa, J. Magn. Magn. Mater. 134, 376 (1994).   DOI
8 Q. Fang, H. Bao, D. Fang, and J. Wang, J. Appl. Phys. 95, 6360 (2004).   DOI
9 O. Kubo, T. Nomura, T. Ido, and H. Yokoyama, J. Magn. Soc. Jpn. 13, 875 (1989).
10 U. Meisen and A. Eiling, IEEE Trans. Magn. 26, 21 (1990).   DOI
11 L. Lutterotti, Nucl. Instrum. Methods Phys. Res. B 268, 334 (2010).   DOI
12 T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH (1990).
13 H. Okamoto, Supplemental literature review of binary phase diagrams: Cs-In, Cs-K, Cs-Rb, Eu-In, Ho-Mn, KRb, Li-Mg, Mg-Nd, Mg-Zn, Mn-Sm, O-Sb, and Si-Sr, J. Phase Equilib. Diff. 34, 251 (2013).   DOI
14 P. Brahma, S. Banerjee, S. Chakraborty, and D. Chakravorty, J. Appl. Phys. 88, 6526 (2000).   DOI
15 P. Brahma, S. Banerjee, and D. Chakravorty, J. Appl. Phys. 98, 064103 (2005).   DOI
16 R. D. Shannon, Acta Cryst. A 32, 751 (1976).   DOI
17 E. W. Gorter, Philips Res. Rep. 9, 403 (1954).
18 F. Leccabue, G. Albanese, and O. A. Muzio, J. Appl. Phys. 61, 2600 (1987).   DOI
19 B. T. Shirk and W. R. Buessem, J. Appl. Phys. 40, 1294 (1969).   DOI
20 B. T. Shirk and W. R. Buessem, IEEE Trans. Magn. 7, 659 (1971).   DOI
21 H. Sato and T. Umeda, Mater. Trans. JIM 34, 76 (1993).   DOI
22 K. Haneda and H. Kojima, Jpn. J. Appl. Phys. 12, 355 (1973).   DOI
23 D. D. Zaitsev, S. E. Kushnir, P. E. Kazin, and Yu. D. Tretyakov, M. Jansen, J. Magn. Magn. Mater. 301, 489 (2006).   DOI
24 J. Ding, W. F. Miao, P. G. McCormick, and R. Street, J. Alloys Compd. 281, 32 (1998).   DOI
25 E. C. Stoner and E. P. Wohlfarth, Philos. Trans. A 240, 599 (1948).   DOI