• Title/Summary/Keyword: Permanent Magnet BLDC motor

Search Result 156, Processing Time 0.021 seconds

A Comparative Study on the Exterior Rotor BLDC Motor According to the Rotor Permanent Magnet Shape (회전자 영구자석 형상에 따른 외전형 BLDC 전동기의 특성비교 연구)

  • Jeong, Jae-Hoon;Cho, Han-Wook;Choi, Jang-Young;Im, Young-Hun;Jang, Seok-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.237-244
    • /
    • 2014
  • In this paper, we presented a study on the design of permanent magnet rotor for exterior rotor type brushless direct current(BLDC) motor. To reduce the cogging torque and torque ripple, the specific shape and magnetization pattern of permanent magnets in BLDC motors are suggested. Firstly, four permanent magnet models with different shapes and magnetization arrays are presented. The results from the finite element method(FEM), the most effective model for reducing cogging torque and torque ripple was presented. In addition, to confirm the steady state performance, the torque-speed characteristic analysis has been performed with variable speed and load. Finally, the best permanent magnet model for reducing cogging torque and torque ripple with appropriate torque-speed performance was selected through the comparison according to the device volume.

Field Weakening Operation of a High Torque Density Five Phase Permanent Magnet Motor Drive (고밀도 토크를 가지는 5상 영구자석형 전동기의 약계자 제어)

  • Kim, Nam-Hun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.318-323
    • /
    • 2007
  • This paper investigates the field weakening operation of a five-phase permanent magnet motor. The proposed motor has concentrated windings such that the produced back-EMF is almost trapezoidal and is supplied with the combined sinusoidal plus third harmonic of currents to produce trapezoidal current. Therefore this motor, while generating the same average torque as an equivalent permanent magnet brushless dc motor, overcomes its disadvantages. It is shown that torque producing and flux producing components of current for this motor can be decoupled by using multiple reference frame transformation. Therefore, Vector control is easily applicable to the motor. This motor has benefits such as high torque density of a BLDC motor below the rated speed and controllability of PMSM above the rated speed and during the field weakening region and simulation and experimental results are provided to prove the validity of the superior performance of this drive.

Characteristics of Torque and Vibration-Noise take into account Permanent Magnet Overhang of BLDC Motor for Robots (로봇 구동용 BLDC Motor의 영구자석 오버행에 따른 토크 및 진동.소음 특성)

  • Kang, Gyu-Hong;Kim, Duck-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.346-352
    • /
    • 2006
  • In Brushless DC Motor, there are Permanent Magnets (PMs) with driving circuit and sensor for detecting to rotor position and rotation speed. In the case of using hall IC sensor which response to magnetic flux, that is required to additional sensor magnet for rotor position detecting. Most of BLDC motor, However, take asymmetrical overhang of PM in rotor instead of additional sensor magnet for operating of hall IC sensor. The asymmetrical overhang of PM occur rotor thrust to z-axis direction that is lead to not only damage of bearing but also intensive noise and vibration. Therefore, the analysis of magnet overhang effect in the side of vibration and drive to hall If sensor is required to precise. In this paper, 2-D Finite Element Method is used to solve precise field computation and thrust of z-axis direction considering asymmetrical magnet overhang. And also the z-axis thrust from the analysis result is compared to experimental result. In conclusion, the purpose of this paper minimize to noise and vibration of BLDC Motor as analyzes to asymmetrical magnet overhang effect.

Permanent Magnet Optimization for Reduction of Cogging Torque of BLDC Motor using Response Surface Methodology (반응표면법을 이용한 코깅 토크 저감을 위한 BLDC 모터의 자석 최적설계)

  • Lee, Jang-Won;Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.202-205
    • /
    • 2008
  • This paper presents an optimization of permanent magnet (PM) in a brushless dc (BLDC) motor using the response surface methodology (RSM). Size and angle of the PM are optimized to minimize the cogging torque, while reducing the magnitude of harmonic at a dominant frequency and maintaining the operating torque. A fitted RS model is constructed by verifying the high reliability of the total variation and the variation of estimated error. The optimized design is validated by carrying out the reanalysis and comparing to the initial model using the nonlinear transient finite element analysis.

  • PDF

Characteristic Analysis of BLDC Motor for Vehicle Compressor Based on High Voltage (고전압 기반의 자동차 압축기용 BLDC 모터의 특성 해석)

  • Kim, Byeong-Woo;Cho, Hyun-Dock;Lee, Do-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.44-51
    • /
    • 2008
  • The performance design and analysis of an electric motor for vehicles is very complicated due to the variety of parameters. This paper presents the design of the BLDC motor for electric air compressor in high voltage(42V) system and compares with the characteristics of IPM, SPM type BLDC motor. Futher, optimal design for the electric motor has been carried out using Equivalent Magnetic Circuit and FEM Modelling. By analyzing the design results, it is found that design parameters for BLDC motor provided an useful tool for vehicles motor design.

A Design Optimization of Asymmetric Air-gap Structure for Small 3-phase Permanent Magnet SPM BLDC Motor

  • Kam, Seung-Han;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • As many researchers are relentlessly trying to improve the power generation schemes from the power grid, to meet the constantly increasing electricity demand. In this paper, the results of a finite element analysis are carried out to study on a design optimization of an asymmetric air-gap structure in 3-phase Permanent Magnet Brushless DC Motors. To achieve a high efficiency for a 3-phase PM BLDC motor, the asymmetric air-gap structure is proposed considering the rotation direction of a motor. Generally, a single-phase BLDC motor is applied asymmetric air-gap structure for starting. This is because the asymmetric air-gap structure causes reluctance variation so the motor can utilize reluctance torque toward a rotation direction. In this paper, the asymmetric air-gap is applied to 3-phase BLDC SPM motor so it utilizes reluctance torque with alignment torque. A proposed model is designed by 2-D FE analysis and the results are verified by experimental test.

Magnetic Circuit and Characteristics of A flux Concentrated Spoke Type. Permanent Magnet BLDC Motor (자속 집중형 Spoke Type 영구자석 BLDC 전동기의 자기회로 및 특성 해석)

  • Kang, Gyu-Hong;Lee, Byoung-Kuk;Hur, Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.135-142
    • /
    • 2004
  • In this paper, the magnetic circuit characteristics and the current/torque analysis of a Spoke Type permanent magnet motor have been researched, compared with the SPM Type motor. In the magnetic circuit analysis, the characteristic of air-gap flux density has been analyzed according to the variation of the number of pole and the ratio of magnet height to arc length using finite element method and circuit equations. Moreover, the electromagnetic and the reluctance torque have been analyzed by the current profile, which is obtained from the variation of turn-on angle, and these informative data has been utilized for the overall characteristics of the Spoke Type BLDC motor.

The design of high-capacity BLDC motor with maximum torque in low speed (저속영역에서 최대 토크 발생이 가능한 대용량 BLDC 모터의 설계)

  • Cho S.H.;Kim C.U.;Bin J.G.;Cho S.E.;Choi C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.824-827
    • /
    • 2003
  • Recently, Development of Rare Earth Permanent magnet with the high remanence, high coercivity allow the design of brushless motors with very high efficiency over a wide speed range. Cogging torque is produced in a permanent magnet by magnetic attraction between the rotor mounted permanent magnet and the stator teeth. It is an undesired effect that contributes to the machines output ripple, vibration, and noise. This cogging torque can be reduced by variation of magnet arc length, airgap length, magnet thickness, shifting the magnetic pole and varying the radial shoe depth and etc. In this paper, Some airgap length and magnet arc that reduce cogging torque are found by FEM(Finite element method). The SPM type of high-capacity BLDC motor is optimized as a sample model.

  • PDF

A Study on the Cogging Torque Reduction in a Novel Axial Flux Permanent Magnet BLDC Motor (축방향 자속형 영구자석 BLDC 전동기의 코깅 토크 저감에 관한 연구)

  • Jo, Won-Young;Lee, In-Jae;Koo, Dae-Hyun;Chun, Yon-Do;Cho, Yun-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.437-442
    • /
    • 2006
  • Cogging torque, the primary ripple component in the torque generated by permanent magnet (PM) motors, is due to the slotting on the stator or rotor. This article shows the reduction of cogging torque in a novel axial flux permanent magnet (AFPM) motor through the various design schemes. 3D finite element method is used for the exact magnetic field analysis. The effects of slot shapes and skewing of slot on the cogging torque and the average torque have been investigated in detail.

A Novel Asymmetrical Half-type IPM BLDC Motor Structure for Reducing Torque Ripple (토크 리플 저감을 위한 새로운 비대칭 하프-타입 영구자석 매입형 브러시리스 직류 모터 구조)

  • Sim, Yosub;Niguchi, Noboru;Hirata, Katsuhiro
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.134-143
    • /
    • 2016
  • This paper proposes a novel asymmetrical interior permanent magnet (IPM) brushless DC (BLDC) motor structure, which utilizes half-type permanent magnet (PM) configuration and has asymmetrical side gaps (slot next to the PMs) for reducing torque ripples. This structure uses 24% less volume of PMs than conventional IPM BLDC motor with a full set of magnets. The characteristics of the proposed motor are compared with three other half-type IPM BLDC motors through finite elements method (FEM) analysis, and the usefulness of the proposed motor was verified through experimental evaluation on prototypes of the conventional motor and proposed motor under various torque load conditions. This research obtained a high-performance IPM BLDC motor while decreasing manufacturing cost at the same time.