• Title/Summary/Keyword: Permanent Faults

Search Result 61, Processing Time 0.024 seconds

Corrective Control of Asynchronous Sequential Circuits with Faults from Total Ionizing Dose Effects in Space (총이온화선량에 의한 고장이 존재하는 비동기 순차 회로의 교정 제어)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1125-1131
    • /
    • 2011
  • This paper presents a control theoretic approach to realizing fault tolerance in asynchronous sequential circuits. The considered asynchronous circuit is assumed to work in space environment and is subject to faults caused by total ionizing dose (TID) effects. In our setting, TID effects cause permanent changes in state transition characteristics of the asynchronous circuit. Under a certain condition of reachability redundancy, it is possible to design a corrective controller so that the closed-loop system can maintain the normal behavior despite occurrences of TID faults. As a case study, the proposed control scheme is applied to an asynchronous arbiter implemented in FPGA.

Winding Turn-to-Turn Faults Detection of Fault-Tolerant Permanent-Magnet Machines Based on a New Parametric Model

  • Liu, Guohai;Tang, Wei;Zhao, Wenxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • This paper proposes a parametric model for inter-turn fault detection in a fault-tolerant permanent-magnet (FTPM) machine, which can predict the effect of the short-circuit fault to various physical quantity of the machine. For different faulty operations, a new effective stator inter-turn fault detection method is proposed. Finally, simulations of vector-controlled FTPM machine drives are given to verify the feasibility of the proposed method, showing that even single-coil short-circuit fault could be exactly detected.

A New One Terminal Numerical Algorithm for Adaptive Autoreclosure and Fault Distance Calculation (적응 자동 재폐로 및 고장거리 산정을 위한 새로운 1단자 알고리즘)

  • Zoran Radojevic;Joong-Rin Shin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.438-445
    • /
    • 2004
  • This paper presents a new numerical spectral domain algorithm devoted to blocking unsuccessful automatic reclosing onto permanent faults and fault distance calculation. Arc voltage amplitude and fault distance are calculated from the fundamental and third harmonics of the terminal voltages and currents phasors. From the calculated arc voltage amplitude it can be concluded if the fault is transient arcing fault or permanent arcless fault. If the fault is permanent automatic reclosure should be blocked. The algorithm can be applied for adaptive autoreclosure, distance protection, and fault location. The results of algorithm testing through computer simulation and real field record are given.

Numerical Algorithm for Adaptive Autoreclosure and Fault Distance Calculation

  • Radojevic, Zoran;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.79-81
    • /
    • 2003
  • This paper presents development and testing of a new numerical spectral domain algorithm devoted to blocking unsuccessful automatic reclosing onto permanent faults and the fault distance calculation. The arc voltage amplitude and the fault distance are calculated from the fundamental and third harmonics of the terminal voltages and currents phasors. From the calculated arc voltage amplitude it can be concluded if the fault is transient arcing fault or permanent arcless fault. If the fault is permanent automatic reclosure should be blocked. The algorithm can be applied for adaptive autoreclosure, distance protection, and fault location. The results of algorithm testing through computer simulation are given.

  • PDF

Detection and Classification of Open-phase Faults in PMSM Using Extended Kalman Filter and Multiple Model (확장칼만필터 및 다중모델 기반 영구자석 동기전동기 권선 개방 고장의 검출 및 분류)

  • Minwoo Kim;Junhyeong Park;Sangho Ko
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.100-107
    • /
    • 2023
  • Open-phase fault in a Permanent Magnet Synchronous Motor (PMSM) occurs due to disconnection of phases of motor windings or inverter switch failures. When an open-phase occurs, it leads to the generation of torque ripples and vibrations in the motor, which can have a critical impact on the safety of the vehicle (including aircraft) using a PMSM as an actuator. Therefore, rapid fault detection and classification are essential. This paper proposes a classification method for detecting open-phase faults and locating fault positions in a PMSM used in aircraft applications. The proposed approach uses an Extended Kalman Filter for fault diagnosis, and it subsequently classifies faults using a Multiple Model filter.

A Study on Fault Model end Performance Evaluation under Power Switch Open Fault in an Inverter-Driven Permanent Magnets Synchronous Motor (영구자석 동기전동기 구동 인버터 스위치의 개방 고장에 의한 제어 특성해석 및 고장모델 연구)

  • Kim, Kyeong-Hwa;Choi, Dong-Uk;Gu, Bon-Gwan;Jung, In-Soung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.40-51
    • /
    • 2009
  • To analyze influences under open faults in switching devices of the PWM inverter and under the isolation between the inverter and motor terminal, a faulty model for the inverter-driven permanent magnet synchronous motor is presented. Even though the conventional dq motor model obtained through the transformation of phase voltage model is widely used to analyze and control AC motor, it can not be used under open faults in switching devices since the 3-phase balanced condition is no longer hold under the open fault and it is not easy to obtain motor input voltages in open phase from the pole voltage. To deal with this problem, a faulty model for an inverter-driven permanent magnet synchronous motor is derived by using the line voltage of motor according to switch open, which can be effectively used for performance evaluation of the diagnostic algorithm. The validity of the proposed faulty model is verified through comparative simulations and experiments using DSP TMS320F28335.

Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults

  • Liu, Xiaoben;Zhang, Hong;Gu, Xiaoting;Chen, Yanfei;Xia, Mengying;Wu, Kai
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.321-332
    • /
    • 2017
  • The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.

Fault Recovery and Optimal Checkpointing Strategy for Dual Modular Redundancy Real-time Systems (중복구조 실시간 시스템에서의 고장 극복 및 최적 체크포인팅 기법)

  • Kwak, Seong-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.112-121
    • /
    • 2007
  • In this paper, we propose a new checkpointing strategy for dual modular redundancy real-time systems. For every checkpoints the execution results from two processors, and the result saved in the previous checkpoint are compared to detect faults. We devised an operation algorithm in chectpoints to recover from transient faults as well as permanent faults. We also develop a Markov model for the optimization of the proposed checkpointing strategy. The probability of successful task execution within its deadline is derived from the Markov model. The optimal number of checkpoints is the checkpoints which makes the successful probability maximum.

Two Terminals Numerical Algorithm for Distance Protection, Fault Location and Acing Faults Recognition Based on Synchronized Phasors

  • Lee Chan-Joo;Park Jong-Bae;Shin Joong-Rin;Radojevic Zoran
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • This paper presents a new numerical algorithm for fault location estimation and for faults recognition based on the synchronized phasors. The proposed algorithm is based on the synchronized phasor measured from the synchronized PMUs installed at two-terminals of the transmission lines. In order to discriminate the fault type, the arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent or transient. The results of the proposed algorithm testing through computer simulation are given.

Development of Simulation Model for Electrical Fault Analysis of PMSM Drive System (영구자석 동기 전동 시스템의 전기적 오류 분석을 위한 시뮬레이션 모델 개발)

  • Choi, Chin-Chul;Hong, Won-Bok;Lee, Woo-Taik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.848-849
    • /
    • 2008
  • This paper presents a simulation model to analyze effects of electrical faults for the Permanent Magnet Synchronous Motor(PMSM) drive system. The major fault modes of system are investigated and an intuitive system model is developed using MATLAB/Simulink. The developed model provides useful environments to inject and remove the various faults. Simulation results show the dynamic performances of system during the transient state from normal to fault, and those will be a great help to make a system more reliable.

  • PDF