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Numerical Algorithm for Adaptive Autoreclosure and Fault Distance Calculation
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Abstract - This paper presents development and
testing of a new numerical spectral domain algorithm
devoted to blocking unsuccessful automatic reclosing
onto permanent faults and the fault distance
calculation. The arc voltage amplitude and the fault
distance are calculated from the fundamental and
third harmonics of the terminal voltages and currents
phasors. From the calculated arc voltage amplitude it
can be concluded if the fault is transient arcing fault
or permanent arcless fault. If the fault is permanent
autornatic reclosure should be blocked. The algorithm
can be applied for adaptive autoreclosure, distance
protection, and fault location. - The results of
algorithm testing through computer simulation are
given.

1. Introduction

It is well known that somewhat about 80% to as
high as 90% of faults on most lines are transient. For
such faults the service can be restored by
automatically reclosing the power circuit breaker.
This can improve power system transient stability and
provide much higher service continuity to the
costumes. However, reclosure onto a permanent fault
may aggravate the potential damage to the system and
equipment.

A few interesting approaches to calculate fault
distance and at the same time to make a distinction
between the transient and the permanent faults are
published [1-3].

In this paper a new numerical spectral domain
algorithm for arcing faults recognition and fault
distance calculation using Discrete Fourier Technique
will be given.

2. Basic Characteristics of a Long Electric Arc

The long electric arc in free air is a plasma
discharge. The highly nonlinear variations of the arc
resistance causes the arc voltage waveform distortion,
distorting it into a near square wave with arc voltage
amplitude ¥, what is given in Fig. 1. The sign of the
arc voltage wave v, is the same as sign of the arc
current 4, The value of ¥, can be obtained from the
product of arc-voltage gradient and the length of the
arc path. Over the range of the arc currents from 100
A to 20 kA the average arc-voltage gradient lies
between 1,2 and 1,5 kVim {4].

In this paper, based on a great number of arc
voltage records, the arc voltage wave shape presented
in Fig. 2 is accepted.
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Fig. 1. Real arc voltage and current waveforms.
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Fig. 2. Typical accepted arc voltage wave shape.

The arc model given in Fig. 2 can be represented
by Fourier series containing odd sine components
only, as follows:

v, (8) = ikh v, sin(hot) (1)
h=1

where A = 1, 3, 5, 7, ... is the harmonic order, ®
is the fundamental radian frequency and &, is the
coefficient of the A-th harmonic,

Using the DFT algorithm it is easy to obtain
coefficients &, for accepted arc voltage model. These
coefficients for the fundamental and for the third
hatmonic are &y = 1.23, and k5 = 0.393.

3. The Fault Model

The current path for the most frequent single-
phase to ground fault includes the electrical arc and
the tower footing resistance. New spectral domain
fault model, developed in this paper, is depicted in
Fig. 3. From this picture the A-th harmonic of the fault
voltage can be expressed by next relation:

Vip =Vap+Relgy, @

where V,, is k-th harmonic of the arc voltage and [,
is A-th harmonic of the fault (arc) current.
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Fig. 3. Fault model given in spectral domain for A-th harmonic.

The arc voltage wave is in phase with the fault arc
current. That means that the phase of the first
harmonic of the arc voltage has to be the same as the
phase of the fault current. The phase of the third
harmonic of the arc voltage has to be three times
greater than the phase of the first harmonic of arc
current. This observation could be expressed as:

Va=kVa and V3 =k,V, 3

where V, and V5 are vectors of the first and the
third harmonics of the arc voltage, k; = k1 <£¢ and
ky=k3/3¢, where ¢ is the phase of the first
harmonic of the fault current ({5, = /g £ ).

In this paper only fundamental and third harmonic
fault model will be used for algorithm developing.

4. Algorithm Derivation

Let us assume a single-phase to ground arcing
fault depicted in Fig. 4. In Fig.4, ¥V} is the A-th
harmonic of the left line terminal phase voltage, /, is
the is the A-th harmonic of the left line terminal
current, ¥, is is the h-th harmonic of the arc voltage,
Rg is fault resistance and ¥V, is is the A-th harmonic
of the faulted phase voltage on the fault place.
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Fig. 4. Single-phase to ground arcing fault on three phase line.

The three-phase circuit from Fig.4 can be
presented by three single-phase equivalent circuits:
positive (p), negative (n) and zero sequence (0)
equivalent circuits. Positive and negative sequence
equivalent circuits are equal and are depicted in
Fig. 5. In Fig. 5, z, is positive or negative sequence
line impedance. The zero sequence equivalent line
circuit is depicted in Fig. 6. In Fig. 6 all variables and
parameters are zero sequence variables and
parameters.
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Fig. 5. Positive and negative sequence line equivalent circuit.
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Fig. 6. Zero sequence line equivalent circuit.

For the equivalent circuits depicted in Figs. 5 and
6 the following equations can be written:

K"p =Zh7\l;.p +Kth @
K;.n = Zhuhn + Kphn &)
Vio = ZuMpy +Erny- 6

By adding equations (4), (5) and (6), and using
basic symmetrical components equations one obtains:

V=21, +k, L) A+V gy, O]

where: k,, =(zp, —2,)/2, is the zero sequence
compensation factor.

Substituting fault model equation (2) in (7), and
using relations (3), next faulted loop equations for
fundamental and 3-rd harmonic are obtained:

Vi=z () +kyLig)h+kVy+Relpy  (8)
Vy=z3(3+k3030)A+ksVa +Relgy. (9)

Because the zero-sequence network is passive we
can assume that zero-sequence currents supplied from
the local and remote systems are in phase. Then
fundamental and 3-rd harmonics of fault current can
be express as:

Igy =31g g =3cpily (10)
Ip3 =31p30 =3cr3l30 (tn
where cg, and cp; are real proportional coefficients.
Now, equations (8) and (9) get the form:
V=2, +ky L1+ kY, +3Rpe 1)y (12)
V=233 +k,3150)A+k3V, +3Rpe3 3o (13)

where RFel = CFIRF and Rpe:; =CF3RF .

Complex equations (12) and (13) give system of
four scalar equations:

Re(z (£ + k5 110)}h+ Refk) ¥, +3Rell g} Rper = RelV;}
14
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Im{z,(/, +&zylm)}k+ Im{l‘l]}Va +3Im{f o} Rper = Im{K1}

(15)
Re{z3(13 +k,3130) A+ Refk; 1V, +3Re{{30) Rpes = Re{V 4}
(16)
Im{z3({3 +4,3 L300+ Imfk s}V, +3Im{7 3} Ree3 = Im{V 3}
Qan

from which unknown arc voltage amplitude and fault
distance can be calculated.

5. Computer Simulated Tests

The tests have been done using the
Electromagnetic Transient Program (EMTP) [5]. The
schematic diagram of the 400 kV power system on
which the tests are based is shown in Fig. 7. The line
parameters were D=100km, r=0.0325 Q /km,
x=0.3 Q/km, ry = 0.0975 Wkm and x, = 0.9 V/km.

Single-phase to ground faults are simulated at
different points on the transmission line. The pre-
fault load was present on the line. The left line
terminal voltages and currents are sampled with the
sampling frequency f, = 6400 Hz. The duration of
data window was 7, = 20 ms.

The arc voltage used by EMTP is assumed to be
of square wave shape with amplitude of ¥, =54 kV,
corrupted by the random noise. The instant of the
fault inception was 23 ms. Fault resistance were
Rg=2Q.

Impute phase voltages and line currents,
measurable at relay place, calculated by EMTP for
selected study case are plotted in Figs. 9 and 10,
respectively.

The fault distance and arc voltage calculated by
algorithm are depicted in Fig. 11. The exact unknown
model parameters (A=60km and ¥, =5.4kV) are
obtained fast, after 20 ms, and accurate.
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Fig. 7: Test powe; system.
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g. 9. Distorted input voltages generated by EMTP.

phase currents {kA)

0 20 40 60 B8O 100
time (ms)

Fig. 10. Distorted input currents generated by EMTP.
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Fig. 11. Calculated fault distance and arc voltage amplitude.

6. Conclusion

A new numerical algorithm for arcing faults
recognition and for fault distance calculation is
presented. The algorithm is based on the spectral
analysis of the input phase voltages and line currents
signals measured by numerical relay. Only
fundamental and third harmonic phasors calculated
by Discrete Fourier Technique are needed for
algorithm development.

The arc voltage amplitude calculated in algorithm
can be used for blocking reclosing of transmissions
lines with permanent faults, whereas the fault
distance calculated in algorithm can be used for
distance protection or for fault location.

The algorithm was successfully tested with data
obtained through computer simulation.

References

[1} R.K.Aggarwal, A.T.Johns, Y.H.Song, R.W.Dunn, D.S.Fitton,
Neural-network based adaptive single-pole autoreclosure
technique for EHV transmission systems. IEE Proc.-Gener.
Transm. Distrib., Vol.141, pp. 155-160, 1994.

{2} ZRadojevi¢, V.Terzija, M.Buri¢, Spectral Domain Arcing
Faults Recognition and Fault Distance Calculation in
Transmission Systers. Electric Power Systems Research,
Vol37, pp. 105-113, 1996,

[3} Z.Radojevi¢, M.Puri¢, Arcing Faults Detection and Fault
Distance Calculation on Transmission Lines Using Least
Square Technique, /[nternational Journal of Power and
Energy Systems, Vol.18, No.3, pp.176-181, 1998,

[4] A.S.Maikapar, Extinction of an Open Electric Are,
Elekirichestvo, Vol.4, pp.64-69, 1960.

[5] D.Lénard, R.Simon, V.Terzija, Simulation von Netzmodellen
mit zwei seitiger Einspeisung zum Test von Netzschutz-
einrichtungen, TB-157/92, Univ. Kaiserslautem, 1952.

_81_



