• 제목/요약/키워드: Periodontopathic bacteria

검색결과 35건 처리시간 0.03초

Real-time PCR quantification of 9 periodontal pathogens in saliva samples from periodontally healthy Korean young adults

  • Choi, Heeyoung;Kim, Eunhye;Kang, Jihoon;Kim, Hyun-Joo;Lee, Ju-Youn;Choi, Jeomil;Joo, Ji-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제48권4호
    • /
    • pp.261-271
    • /
    • 2018
  • Purpose: Few studies have examined periodontal pathogens from saliva samples in periodontally healthy young adults. The purposes of this study were to determine the prevalence of periodontopathic bacteria and to quantify periodontal pathogens in saliva samples using real-time polymerase chain reaction (PCR) assays in periodontally healthy Korean young adults under 35 years of age. Methods: Nine major periodontal pathogens were analyzed by real-time PCR in saliva from 94 periodontally healthy young adults. Quantification of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Fusobacterium nucleatum, Campylobacter rectus, Peptostreptococcus anaerobius, and Eikenella corrodens was performed by DNA copy number measurement. Results: F. nucleatum and E. corrodens were detected in all subjects; the numbers of positive samples were 87 (92.6%), 91 (96.8%), and 90 (95.7%) for P. gingivalis, P. anaerobius, and C. rectus, respectively. Other pathogens were also detected in periodontally healthy subjects. Analysis of DNA copy numbers revealed that the most abundant periodontal pathogen was F. nucleatum, which was significantly more prevalent than all other bacteria (P<0.001), followed by P. anaerobius, P. gingivalis, E. corrodens, C. rectus, and T. denticola. There was no significant difference in the prevalence of each bacterium between men and women. The DNA copy number of total bacteria was significantly higher in men than in women. Conclusions: Major periodontal pathogens were prevalent in the saliva of periodontally healthy Korean young adults. Therefore, we suggest that the development of periodontal disease should not be overlooked in periodontally healthy young people, as it can arise due to periodontal pathogen imbalance and host susceptibility.

백두옹 추출물의 치주 병인균에 대한 항균효과 (The Antimicrobial Effect of Pulsatilla Koreana Extracts to Oral Micro-Organism)

  • 정성화;정진형;임성빈;김정근;소은희
    • Journal of Periodontal and Implant Science
    • /
    • 제30권3호
    • /
    • pp.661-676
    • /
    • 2000
  • Gingivitis and periodontitis are infectious diseases in that microorganisms are the primary extrinsic cause of the diseases. the occurrence of gingivitis has been associated clearly with the presence of microorganisms at the disease site, and the histologic nature of the tissue involved is indicative of an inflammatory response induced by microorganisms. additional evidence for the microbial etiology of periodontal disease is that numerous antimicrobial agents are effective in reducing plaque accumulation and periodontal diseases. the purpose of this article is to analyze the antimicrobial effects of Pulsatilla koreana. Well-dried Pulsatilla koreana purchased from herbs distributor was ground and extracted into methanol(MeOH), ethylacetate(EtoAc), chlorform($CHCl_3$) and Butyl alcohol(BuOH). we have then applied each solution to the bacteria samples(Bacteroides forsythus, Streptococcus mutans, Streptococcus sanguis, Porphylomonas gingivalis, Actinobacillus actinomycetemcomitans, Eikenella corrodens, Prevotella intermedia, Actinomyces viscosus, Prevotella nigrescens , Rothia dentocariosa, Fusobacterium nucleatum, Pseudomonas aeruginosa, Staphylococcus aureus) collected from several organizations. To conduct susceptibility test(Kirby-Bauer method), plate contained each periodontopathic bacteria is spread extracted into methanol(MeOH), ethylacetate(EtoAc), chlorform($CHCl_3$) and Butyl alcohol(BuOH) and to measure the minimum inhibition concentration(MIC) of the bacteria against the solutions to ultimately determine antimicrobial effects of the solutions, insert bacteria sample into $20{\mu\ell}/{m\ell}$, $10{\mu\ell}/{m\ell}$, $5{\mu\ell}/{m\ell}$, $2.5{\mu\ell}/{m\ell}$ of each solution and control group(not contained solution) 1. Solution extracted into methanol did not show clear zone against all bacteria samples. Only P.nigrescens, S. mutans and S. sanguis in solution extracted into ethylacetate, S. mutans and S. anguis in solutions extracted into chlorform and Butyl alcohol showed clear zone against all bacteria samples. Solution extracted into Butyl alcohol showed clear zone against 13 types of bacteria, excluding P. gingivalis. 2. In Solution extracted into methanol, the bacteria samples grew in the highest concentrated plate, showing minimal variation from control group. 3. In Solution extracted into Butyl alcohol, S. aureus, P. intermedia, E. corrodens, A. actinomycetemcomitans, B. forsythus, P. gingivalis et al. showed decreased growth in the highest concentrated plate. P. auruginosa, R. dentocariosa, A. viscosus, P. nigrescens, S. mutans et al. showed decreased growth at MIC $20{\mu\ell}/{m\ell}$ and S. sanguis showed decreased growth at MIC $10{\mu\ell}/{m\ell}$. 4. By analyzing the MIC level through considering the results from Kirby-Bauer method, Solution extracted into methanol did not reveal any antimicrobial effects and Solution extracted into Butyl alcohol showed the highest antimicrobial effects In conclusion, it can be used the extracts of Pulsatilla koreana as wide spectrum antimicrobial agent.

  • PDF

피톤치드 처리 후 구강 내 잔존 S. thermophilus의 P. gingivalis에 대한 효과 (The Effect of S. thermophilus Isolated from Saliva Treated with Phytoncide on P. gingivalis)

  • 정성희;어규식;전양현;홍정표
    • Journal of Oral Medicine and Pain
    • /
    • 제34권1호
    • /
    • pp.23-37
    • /
    • 2009
  • 치주질환과 구취를 유발시키는 중요한 원인균인 P. gingivalis에 대한 피톤치드의 항균효과와 항균작용은 이미 연구되어 있으나, 정상인의 구강상주균에 대한 연구는 아직 희귀한 편이다. 이에 본 연구에서는 건강한 정상인의 타액에 편백 피톤치드를 첨가하였을 때 사멸되지 않고 생존하는 타액세균을 분리하여 구강 유해균과 함께 배양한 후 구강 유해균에 대한 생존 타액세균의 억제효과를 파악함으로써 향후 프로바이오틱으로 작용할 수 있는 구강상주균의 균종을 동정하여 다음과 같은 결론을 얻었다. 1. 정상인의 전타액에 1% 피톤치드를 적용하였을 때 잔존 생균수는 감소하는 경향을 보였다. 2. 피톤치드 적용 후 생존한 주 세균종은 S. thermophilus (53%)로 나타났다. 3. 피톤치드 적용 후 생존한 균을 P. gingivalis A7A1-28과 P. gingivalis W83에 교차배양한 결과 생존균의 대부분(72.5%) 이 P. gingivalis A7A1-28과 P. gingivalis W83의 성장을 억제하였다. 4. 생존 S. thermophilus의 85.8%, S. sanguinis는 75.8%가 P. gingivalis 를 억제하는 것으로 나타났다. 이상의 결과로 미루어, P. gingivalis 등 구강 내 유해균을 직접 억제할 수 있는 것으로 알려진 피톤치드로 처리할 경우 피톤치드에 생존하는 구강상주균이 P. gingivalis에 대해 부가적으로 억제작용을 할 수 있기 때문에 피톤치드의 사용은 치주질환을 예방하고, 그 결과 치주질환 및 구취환자의 구강 환경을 크게 개선할 수 있을 것으로 생각된다.

한국인에 있어서 Actinobacillus actinomycetemcomitans의 가족내 전이양상에 관한 연구 (INTRAFAMILIAL TRANSMISSION OF ACTINOBACILLUS ACTINOMYCETEMCOMITANS IN KOREAN POPULATIONS)

  • 정영인;김성조;최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제25권3호
    • /
    • pp.679-693
    • /
    • 1995
  • The present study has been performed to see the intrafamilial transmission of periodontopathic organism Actinobacillus actinomycetemcomitans in Koreans having various froms of periodontal diseases. 17 clinical isolates from 8 periodontal patients and 20m clinical isolates from their 8 family members were grown anaerobically for the serotyping and the extraction of genomic DNA. The DNA was digested with restriction endonucleases (EcoRI+HindIII) and plasmid pAA 2097(kindly provided by Dr. DiRienzo, Univ. of Pennsylvania) including 4.7kb-size randlomly clone probe for restriction length pleomorphism analysis(RFLP). RFLP patterns of reference serotypes a, b, c, d, and e were used as the genotypes A, B, C, D, and E, respectively for comparison of genotypes of clinical isolates. 28 out of total 37 clinical isoltes belonged to either one of 5 basic gentotypes and 9 remaining isolats did not fall into any types, and hence were designate as non-type(NT). Genotype C were the most frequently found one(35.1%) and genotype B has not isolated. Intrafamilial transmission of bacteria between spouses, brothers and sisters, and parents and their offsprings, resepctively could well be demonstrated by comparing RFLP patterns. There were not any specific genotypes which showed predominance over others in terms of transmission.

  • PDF

Purification and Properties of HPS (Halitosis Prevention Substance) Isolated from Cumin (Cuminum cyminum L.) Seed

  • Kang, Eun-Ju;Ryu, Il-Hwan;Lee, Kap-Sang
    • Food Science and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.621-627
    • /
    • 2005
  • Halitosis is mainly caused by the presence of volatile sulfur-containing compounds (VSC's) produced by proteolytic periodontopathic bacteria in the oral cavity. Various mouth-rinses have been offered on the market as solutions to reduce halitosis. The aim of this study was to find a potent substance for the prevention of halitosis. The halitosis prevention substance (HPS) from cumin seed powder was purified by solvent extraction, silica gel column chromatography and preparative TLC to yield an oil phase (0.98%). Instrumental analysis such as FT-IR, $^1H$-NMR and $^{13}C$-NMR showed that HPS contained an -OH group, -HC=CH-, -COO-, and long chain acyl group. HPS was therefore determined to be 2-hydroxyethyl-${\beta}$-undecenate. HPS inhibited the growth of Fusobacterium nucleatum and Porphyromonas gingivalis, by 72.44% and 64.37% at $1{\times}10^{-2}\;M$, and by 99.85% and 91.62% at $5\;{\times}\;10^{-2}\;M$, respectively. It also inhibited the activity of L-methionine-${\alpha}$-deamino-${\gamma}$-mercaptomethane-lyase (METase), which was produced by oral microbes. Furthermore, the VSC production by oral microbes in the human mouth air decreased with increasing HPS concentration. These results suggested that HPS from cumin seed is an efficient halitosis prevention agent.

고농도의 글루코스가 치주질환 병인균주의 세균내독소에 의한 염증성 cytokine 및 nitric oxide의 생성에 미치는 영향 (The effect of high concentration of glucose on the production of proinflammatory cytokines and nitric oxide induced by lipopolysaccharides from periodontopathic bacteria)

  • 김성조
    • Journal of Periodontal and Implant Science
    • /
    • 제38권3호
    • /
    • pp.511-520
    • /
    • 2008
  • Purpose: Diabetes mellitus is a clinically and genetically heterogeneous group of metabolic disorders manifested by abnormally high levels of glucose in the blood. Mounting evidence demonstrates that diabetes is a risk factor for gingivitis and periodontitis. The circulating mononuclear phagocytes in diabetic patients with hyperglycemia are chronically exposed to high level of serum glucose. Thus, this study attempted to determine the effect of pre-exposure of monocytes and macrophages to high concentration of glucose on lipopolysaccharide (LPS)-induced production of pro-inflammatory mediators. Material and Methods: For this purpose, cells were cultured in medium containing normal (5 mM) or high glucose (25 mM) for 4-5 weeks before treatment for 24 h with LPS. LPS was highly purified from Porphyromonas gingivalis or Prevotella intermedia by phenol extraction. Result: Results showed that prolonged pre-exposure of cells to high glucose markedly increased LPS-stimulated NO secretion when compared to normal glucose. In addition to NO, high glucose also augmented LPS-stimulated IL-6, IL-8, and TNF-$\alpha$ secretion after cells were exposed to high glucose for 4 weeks. Conclusion: The present study demonstrates that pre-exposure of mononuclear phagocytes with high glucose augments LPS-stimulated production of pro-inflammatory mediators. These findings may explain why periodontal tissue destruction in diabetic patients is more severe than that in non-diabetic individuals.

Porphyromonas gingivalis와 Tannerella forsythia의 응집반응 (Coaggregation between Porphyromonas gingivalis and Tannerella forsythia)

  • 엄흥식;이석우;박재홍
    • Journal of Periodontal and Implant Science
    • /
    • 제36권1호
    • /
    • pp.265-272
    • /
    • 2006
  • Dental plaque, a biofilm consisting of more than 500 different bacterial species, is an etiological agent of human periodontal disease, It is therefore important to characterize interactions among periodontopathic microorganisms in order to understand the microbial pathogenesis of periodontal disease. Previous data have suggested a synergistic effect of tow major periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia in the periodontal lesion. In the present study, to better understand interaction between P. gingivalis and T. forsythia, the coaggregation activity between these bacteria was characterized. The coaggregation activity was observed by a direct visual assay by mixing equal amount (1 ${\times}$ $10^9$)of T. forsythia and P. gingivaJis cells. It was found that the first aggregates began to appear after 5-10 min, and that the large aggregates completely settled within 1 h. Electron and epifluorescence microscopic studies confirmed cell-cell contact between two bacteria. The heat treatment of P. gingivalis completely blocked the activity, suggesting an involvement of a heat-labile component of P. gingivalis in the interaction. On the other hand, heat treatment of T. forsythia significantly increased the coaggregation activity; the aggregates began to appear immediately. The coaggregation activity was inhibited by addition of protease, however carbohydrates did not inhibit the activity, suggesting that coaggregation is a protein-protein interaction. The results of this study suggest that coaggregation between P. gingivalis and T. forsythia is a result of cell-cell physical contact, and that coaggregation is mediated by a heat-labile component of P. gingivalis and T. forsythia component that can be activated on heat treatment.

치주염 유발 세균 Aggregatibacter actinomycetemcomitans와 Porphyromonas gingivalis에 의한 committed osteoclast precursor 분화 증가 (Augmented Osteoclastogenesis from Committed Osteoclast Precursors by Periodontopathic Bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis)

  • 박옥진;권영각;윤철희;한승현
    • 한국미생물·생명공학회지
    • /
    • 제44권4호
    • /
    • pp.557-562
    • /
    • 2016
  • 치주질환은 만성염증성 질환으로 치조골소실을 일으켜 성인치아상실을 유발하는 요인 중 하나이다. 그람 음성세균인 Aggregatibacter actinomycetemcomitans와 Porphyromonas gingivalis는 치주질환환자의 병소에서 쉽게 동정된다. 지질다당체(Lipopolysaccharide; LPS)는 그람 음성세균의 핵심 독력인자로 알려져 있다. 이러한 세균과 LPS는 파골세포에 의한 골소실을 조절하는 요인 중 하나이다. 그러므로 본 연구에서는 동물모델을 활용하여 A. actinomycetemcomitans와 P. gingivalis의 의한 골소실 여부를 확인하고, 기전규명을 위하여 A. actinomycetemcomitans, P. gingivalis, A. actinomycetemcomitans와 P. gingivalis에서 분리한 LPS에 의한 파골세포분화 영향을 연구하였다. 열사멸한 A. actinomycetemcomitans (HKAa)와 열사멸한 P. gingivalis (HKPg)가 복강으로 투여된 쥐의 대퇴골은 대조군에 비해 감소된 골량을 보여주었다. 이러한 골소실의 증가가 파골세포분화 때문인지 확인하기 위해 파골세포분화를 연구한 결과, bone marrow-derived macrophage (BMM)의 RANKL-매개 파골세포분화를 감소시켰으나, committed osteoclast precursor의 파골세포분화를 유도함을 확인하였다. 세균에 의한 파골세포분화 결과와 동일하게 A. actinomycetemcomitans와 P. gingivalis에서 분리한 LPS 역시 RANKL-매개 파골세포분화는 감소시키고, committed osteoclast precursor의 파골세포분화를 유도하였다. 결과적으로 치주원인균인 A. actinomycetemcomitans와 P. gingivalis는 committed osteoclast precursor의 파골세포분화를 증가시키는데, 이 세균들의 LPS가 핵심 역할을 수행하는 것으로 판단되며 이를 통해 골 흡수를 유발함을 알 수 있었다.

피톤치드 처리 후의 잔존 구강 세균이 Pr. intermedia에 미치는 영향 (Effect of Maintained Microorganisms against to The Phytoncide on Pr. intermedia)

  • 박재봉;어규식;전양현;홍정표
    • Journal of Oral Medicine and Pain
    • /
    • 제34권2호
    • /
    • pp.153-167
    • /
    • 2009
  • 본 연구는 편백 피톤치드에 의해 사멸되지 않는 구강상주균을 분리하고, 이 분리된 세균이 구강 병인균에 대하여 어떠한 영향을 미치는지를 관찰함으로써 편백 피톤치드에 구강 내 세균에 대한 지속적인 이차적 효과를 구명한 실험적 연구이다. 이에 정상인 타액 내의 구강상주균에 1%의 편백 피톤치드를 첨가하여 사멸되지 않고 생존한 200개의 잔존 세균을 뷴리하고 이들이 치주질환과 구취의 중요한 원인균인 Pr. intermedia에 대한 억제효과를 관찰하여 다음과 같은 결론을 얻었다. 1. 선택된 200개의 잔존 세균 중, 148개(74.0%)가 Pr. intermedia를 억제하였다. 2. 선택한 200개의 잔존 세균은 Streptococcus salivarius가 109개(54.5%)로 가장 많이 나타났고, Streptococcus sanguinis가 25개(12.5%), Streptococcus mitis가 15개(7.5%)로 나타났다. 3. Pr. intermedia를 억제하는 148개의 잔존 세균 중, Streptococcus salivarius가 85.3%(93/109), Streptococcus sanguinis가 64.0%.(16/25), Streptococcus mitis가 54.3%(8/15), Streptococcus parasanguinis가 66.7%(6/9), Streptococcus alactolyticus가 100%(8/8)로 나타났다. 따라서 타액 내에서 편백 피톤치드에 저항하는 구강 상주균은 Streptococcus salivarius, Streptococcus sanguinis, Streptococcus mitis 등으로 나타났으며, 이는 치주질환을 일으키고 구취를 발생시키는 대표적 균주인 Pr. intermedia 에 대하여 세균 억제효과를 가지고 있었다. 따라서 피톤치드는 구강 내 유해균을 억제할 수 있고, 잔존하는 구강 상주균과 함께 구강 내 유해균을 억제함으로써 지속적이고 이차적인 효과를 나타냄으로써 치주질환과 구취발생을 예방할 수 있어, 구강 환경 개선을 위한 임상적 근거가 마련될 수 있을 것으로 생각된다.

Responsiveness to Lipopolysaccharide Changes According to the Aging of Periodontal Ligament Fibroblasts

  • Jun, Ji-Hae;Kim, Gwan-Shik;Woo, Kyung-Mi;Min, Byung-Moo;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제30권1호
    • /
    • pp.1-8
    • /
    • 2005
  • The elderly suffer from an impaired immune function being obvious in a higher susceptibility to infections. Although the inflammatory cells are the major immunomodulatory cells, fibroblasts also secrete a variety of inflammatory cytokines and chemokines. Therefore periodontal tissue aging might playa role in development and progress of periodontitis. In this study, we investigated the effect of in vitro periodontal ligament cellular aging on the inflammatory cytokines, chemokines, and matrix metalloprotease(MMP)-2 expression induced by lipopolysaccharide(LPS) treatment. Three different cell populations were used; passages 4-5, 14-15, and 24-25 (at passage 27, more than 90% cells were replicative senescent). LPS increased the expression of interleukin(IL)-1${\beta}$, IL-6, and tumor necrosis factor-${\alpha}$, IL-8, RANTES, and MMP-2. However, the order of induction folds were passages 14-15 > 4-5 > 24-25. While the expression level of Toll-like receptor(TLR) 4 decreased according to the increase in passage number, the level of TLR2 was highest at passages 14-15 and then decreased at passages 24-25. While the spontaneous expression of IL-8 decreased according to the increase in passage number, that of RANTES and proMMP-2 increased according to the increase in passage number. These results suggest that the aging of periodontal ligament fibroblasts differentially affect the role as immunomodulatory cells in response to periodontopathic bacteria and therefore might be another risk factor of periodontitis progression.