• 제목/요약/키워드: Periodic Motion

검색결과 219건 처리시간 0.025초

보강재의 운동으로 인한 보강판의 연성진동 (Coupled Vibration of Stiffened Plates due to Motion of Stiffeners)

  • 이현엽
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.153-159
    • /
    • 1997
  • In a stiffened plate reinforced on one of its sides by beam type stiffeners, the asymmetry about the plate mid-plane induces coupling between flexural wave and longitudinal wave. In this research interactions between flexural and longitudinal wave motion are analyzed in a stiffened plate which is reinforced only in one direction. The plate is modelled as a beam to which offset spring-mounted masses are attached at regular intervals. Propagation constants of the coupled waves and corresponding characteristic waves are derived by using periodic structure theory, and a computer code is developed. Also, sample calculations are carried out and the results are discussed.

  • PDF

마찰력이 개재된 반복충돌 혼돈 동역학의 수치해석적 연구 -진동보울피더 (Numerical Study on Chaotic Dynamics of Repeated Impacts with Friction - Vibratory Bowl Feeders)

  • 한인환;이윤재;윤구영
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.143-152
    • /
    • 1996
  • The vibratory bowl feeder is the most versatile of all hopper feeding devices for small engineering parts, and the typical nonlinear dynamic system experiencing repeated impacts with friction. We model and analyze the dynamic behavior of a single part on the vibrating track of the bowl feeder. While the previous studies are restricted to the sliding regime, we focus our analysis on the hopping regime where the high conveying rate is available. We present the numerical analysis results for conveying rate and frictional impact process both in periodic and chaotic regimes. We examined the dynamic effects from the variation of several physical parameters, and presented the important features for the design of the vibratory bowl feeder. This research holds much potential for leverage over design problems of wide range of mechanisms and tools with repeated collisions.

  • PDF

양면지지형 유정압테이블 운동정밀도의 유한요소 해석 (Finite Element Analysis on the Motion Accuracy of Double-sides Hydrostatic Table)

  • 박천홍;정재훈;이후상;이찬홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.188-192
    • /
    • 2000
  • An analysjs model for calculation the motion accuarcy of double sides hydrostatic table is proposed in thn paper. For the analysis of motion accuracy, profiles of each rails are assumed as periodic function, and represented using Fourier coefficients. Variahon of bearing clearance is represented as the vanation of linear, angular displacement of table and profiles of rails. Motion accuracy is calculated in the basis of finite element analysis on the pressure dutributmn of table. In order to improve calculating time in the analysis of motion accuracy, The proposed modeling method converts double sides table to single side table equivalently Results by the proposed method 1s compared with directly caculated results mdyhcally, and also compared wlth experimental results. From the theoretical and experimental analysis, it is confirmed that the proposed modeling mothod is very effective to analyze the motion accuracy of dauble sides hydrostatic table.

  • PDF

4각 보행로봇의 동적 걸음새 평가 (Feasibility test for dynamic gait of quadruped walking robot)

  • 김종년;홍형주;윤용산
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1455-1463
    • /
    • 1990
  • In this study the feasibility of a dynamic gait for a given quadruped walking robot is investigated through a computer simulation of the walking with certain drivings of the actuators. Two planar inverted pendulums are used to represent the dynamic model of the leg of the walking robot. It's gait motion is assumed to be periodic and symmetric between left and right sides only with half cycle delay. The dynamics of the walking robot is simplified by introducing two virtual legs to produce two planar inverted pendulums in two orthogonal planes and on the basis that certain legs in pair act as one. The feasibility of the dynamic gait motion is established from the following two necessary conditions:(1) The position and velocity of a foot must satisfy the stroke and velocity requirements.(2) The gait motion should be periodic without falling down. The gait feasibility test was applied to a walking robot design showing the specific acceptable speed range of the robot in trot. Also it showed that the higher body height may produce the faster trot gait.

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.641-651
    • /
    • 2019
  • The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

BVP 오실레이터 모델에서의 미소 파라미터 섭동에 의한 카오스 제어 및 하드웨어 구현 (The study of Controlling chaos for BVP oscillation model by small parameter perturbation and hardware implementation)

  • 배영철;서삼문;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.154-156
    • /
    • 1995
  • The effect of a periodic and a chaotic' behaviour in the Bonhoeffer-Van der Pol(BVP) oscillation of the nerve membrane driven by a periodic stimulating current $A_1=cos\;{\omega}\;t$ are investigated by numeric analysis and hardware Implementation. To control the chaotic motion, we are suggested by temperature parameter c, $c=c(1+\eta\;cos\;{\Omega}\;t)$ which the values of $\eta,\;Omega$ varied respectively. The feasibilities of chaotic and periodic phenomena were analysed by phase plane and time series.

  • PDF

A novel detection method of periodically moving region in radial MRI

  • Seo, Hyunseok;Park, HyunWook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제2권4호
    • /
    • pp.203-207
    • /
    • 2013
  • The appropriate handling of motion artifacts is essential for clinical diagnosis in magnetic resonance imaging (MRI). In many cases, motion is an inherent part of MR images because it is difficult to control during MR imaging. As the motion in the human body occur in a deformable manner, they are difficult to deal with. This paper proposes a novel detection method for periodically moving regions to produce MR images with less motion artifacts. When the data is acquired by the radial trajectory, the proposed method can extract the deformable region easily using the difference in the modulated sinograms, which have different periodic phase terms. The simulation results applied to the various cases confirmed the good performance of the proposed method.

  • PDF

PATH OPTIMIZATION OF FLAPPING AIRFOILS BASED ON NURBS

  • Kaya Mustafa;Tuncer Ismail H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.263-267
    • /
    • 2006
  • The path of a flapping airfoil during upstroke and down-stroke is optimized for maximum thrust and propulsive efficiency. The periodic flapping motion in combined pitch and plunge is described using Non-Uniform B-Splines(NURBS). A gradient based algorithm is employed for optimization of the NURBS parameters. Unsteady, low speed laminar flows are computed using a Navier-Stokes solver in a parallel computing environment based on domain decomposition. It is shown that the thrust generation is significantly improved in comparison to the sinusoidal flapping motion. For a high thrust generation, the airfoil stays at a high effective angle of attack for short durations.

  • PDF

Improving wing aeroelastic characteristics using periodic design

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.353-369
    • /
    • 2017
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness, and inertia forces on a structure. In an aircraft, as the speed of the flow increases, there may be a point at which the structural damping is insufficient to damp out the motion which is increasing due to aerodynamic energy being added to the structure. This vibration can cause structural failure, and therefore considering flutter characteristics is an essential part of designing an aircraft. Scientists and engineers studied flutter and developed theories and mathematical tools to analyze the phenomenon. Strip theory aerodynamics, beam structural models, unsteady lifting surface methods (e.g., Doublet-Lattice) and finite element models expanded analysis capabilities. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. This may reduce the vibration level of the structure, and hence improve its dynamic performance. In this paper, for the first time, we analyze the flutter characteristics of a wing with a periodic change in its sandwich construction. The new technique preserves the external geometry of the wing structure and depends on changing the material of the sandwich core. The periodic analysis and the vibration response characteristics of the model are investigated using a finite element model for the wing. Previous studies investigating the dynamic bending response of a periodic sandwich beam in the absence of flow have shown promising results.

Flapping Airfoil의 2차원 운동궤적에 따른 공력특성연구 (A Numerical Study on Aerodynamic Characteristics for Cyclic Motion Profile of Flapping Airfoil)

  • 정원형;안존;이경태
    • 한국항공우주학회지
    • /
    • 제34권3호
    • /
    • pp.6-13
    • /
    • 2006
  • 본 연구에서는 저 레이놀즈수 유동에서 flapping운동을 하는 익형이 가질 수 있는 2차원 평면상의 운동궤적에 따른 공력특성을 연구하였다. 익형이 유동흐름방향으로 왕복 운동하는 lead-lag운동과 plunging운동의 조합으로 2차원 평면상에 나타날 수 있는 여러 운동궤적을 합성하여 flapping 주파수 변화에 따른 공력계수들의 변화를 살펴보았다. 상하방향의 순수 plunging운동에 lead-lag운동을 추가함으로써, 평균추력계수와 평균양력계수를 증가시킬 수 있는 운동궤적이 존재함을 확인하였다. 아울러 운동주기 동안 나타나는 추력계수와 양력계수의 변화를 비교하여 upstroke와 downstroke시 나타나는 공력특성을 파악하였다.