• Title/Summary/Keyword: Periodic Heating

Search Result 52, Processing Time 0.028 seconds

An Experimental Study on the Heat Transfer Performance of an Air-Source Heat Pump Using a PCM Unit for Continuous Heating (PCM 유닛을 적용한 공기 열원 히트펌프의 연속난방 성능 특성에 관한 실험적 연구)

  • Chang, Min;Jung, Dong Il;Jung, Jong Ho;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.537-543
    • /
    • 2015
  • Air-source heat pumps are widely used in winter as heating units due to their higher efficiency compared to electronic heaters or gas fired equipment. However, the air-source heat pump can cause discomfort during periodic defrosting operations. In this study, a PCM unit for continuous heating was adopted to solve this problem. The PCM unit consisted of a PCM, a heat exchanger, and control valves. It was installed between the outdoor and indoor units. The performance of the proposed system was measured during both defrosting and heating operations. The indoor unit showed an average leaving temperature of $26^{\circ}C$ after adopting the PCM unit for continuous heating during the defrosting operation.

An Experimental Study on the Flow Characteristics Inside an Open Two-Phase Natural Circulation Loop (개방된 2상 자연순환 회로내의 유동특성에 관한 실험적 연구)

  • 경익수;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1313-1320
    • /
    • 1993
  • Flow patterns inside the riser section and the effects of the heater inlet-and exit-restrictions, liquid charging level and the heater inlet subcooling on the flow characteristics inside an open two-phase natural circulation loop were studied experimentally. Three basic circulation modes were observed ; periodic circulation (A)(flow oscillations with incubation(no boiling) period), continuous circulations(stable operation mode with no flow oscillations), and periodic circulation (B) (flow oscillations with continuous boiling). The circulation rate increases and then decreases with the increase of the heating rate and the maximum circulation rate appears with the continuous circulation mode. The decrease of the inlet-restriction or the increase of the exitrestriction destabilizes the system. When the liquid charging level or the inlet subcooling decreases, the continuous circulation mode starts at the lower heating rate and the system is stabilized.

Study on the effective response method to reduce fire risk of wood fuel heating system (화목 연료 난방설비의 화재 위험 감소 방안에 관한 이론적 연구)

  • Park, Kyong-Jin;Lee, Bong-Woo;Lee, Guen-Cull;Nam, Ki-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.163-171
    • /
    • 2019
  • Recently, rural housing in urban areas has been increasing due to the improvement of income level. With the increase of the construction of the power house, the installation of the heating system using the harmonious fuel for the purpose of heating and the beauty of the room is increasing rapidly. In addition to the increasing use of firewood heating equipment, the incidence of fire is also increasing. Analysis of the National Fire Data System of the Fire Department The result of the analysis of the National Fire Data System Many parts of the fire are incinerated by the accumulation of tar due to the incompleteness of periodic cleaning inside the cylinder. The distance between the fire extinguisher and the combustible materials such as ceiling, Resulting in fire. In addition, it was found that much of the fire of the firewood heating system in the time zone occurs during the sleeping and resting time and there is not enough time for the residents to cope. This, in turn, causes serious harm to the lives and property of the users of the pyrotechnic heating system. Therefore, in this study, domestic and foreign standards and laws related to fuel oil heating facilities were analyzed and 12 cases of fire accidents were analyzed. Through the revision of the fire prevention and firefighting facilities installation and maintenance law, the installation standards of the alarm and fire extinguishing facilities were presented.

Double-Diffusive Convection in a Rectangular Cavity Responding to Time-Periodic Sidewall Heating (주기적인 측벽가열에 반응하는 사각공동내의 이중확산 대류)

  • Kwak H. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.112-117
    • /
    • 2001
  • A numerical investigation is made of unsteady double-diffusive convection of a Boussinesq fluid in a rectangular cavity subject to time-periodic thermal excitations. The fluid is initially stratified between the top endwall of low solute concentration and the bottom endwall of high solute concentration. A time-dependent heat flux varying in a square wave fashion, is applied on one sidewall to induce buoyant convection. The influences of the imposed periodicity on double-diffusive convection are scrutinized. A special concern is on the occurrence of resonance that the fluctuations of flow and attendant heat and mass transfers are mostly amplified at certain eigenmodes of the fluid system. Numerical solutions are analyzed to illustrate the characteristic features of resonant convection.

  • PDF

Atomic Structure Analysis of A ZnO/Pd Interface by Atomic Resolution HVTEM

  • Saito, Hiromitsu;Ichinose, Hideki
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.41-46
    • /
    • 2006
  • Interfacial atomic structure (chemical structure) of a Pd/ZnO hetero junction was investigated by atomic resolution high voltage transmission electron microscopy (ARHVTEM). A misfit dislocation did not work as a stress accommodation mechanism in the ZnO(0001)/Pd (111) interface. But the periodic stress localization occurred in the ZnO($10\bar{1}0$)/(200) interface. The periodicity of the local strain coincided with that of misfit dislocation. Atomic structure image of the ARHVTEM showed that an atomic arrangement across the interface was in the order of O-Zn-Pd. It was shown that mechanical weakness of the ZnO(0001)/Pd(111) interface against cyclic heating is attributable to the absence of the periodic stress localization of the misfit dislocation.

The Micro-Actuator Development of using the Bubble (기포를 이용한 마이크로 액츄에이터 개발)

  • 최종필;반준호;전병희;장인배;김헌영;김병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.381-385
    • /
    • 2003
  • This paper presents the fabrication possibility of the micro actuator which uses a micro-thermal bubble, generated by a micro-heater under pulse heating. The micro-actuator is consist of three plate. The lower plate includes the channel and chamber are fabricated on high processability silicon wafer by the DRIE(Deep Reactive ion Etching) process. The middle plate includes the chamber and diaphragm, and the upper plate is the micro-heater. The micro-heater designed non-uniform width and results in periodic generation of stable single bubbles in D.I water. The single bubble appears precisely on the narrow part of the micro-heater and control is recorded.

  • PDF

An Experimental Study on the Defect Detection for the Steam Heating Drum Journal (증기 가열 드럼 저널부의 결함 검출에 대한 실험적 연구)

  • Suh, Nam-kyu;Chang, Tae-Hyun;Lee, Jae-do
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.69-82
    • /
    • 2004
  • Recently, in the food, paper, steel and plastic industries, plate or sheet type products have been produced by the rolling drum. Steam heating drums are introduced into plastic products facilities in order to keep the density, microstructure, and strength of material uniformly. The drum journal can not help being concentrated by stresses due to the bending and torsion. Especially the drum, heated by high pressure steam, might be exposed in the steam leakage accident. First of all, the stresses on the steam drum journal are to be analyzed, and a case study proper to the subject was performed with a scraped journal, in order to investigate the failure characteristics as well as the initiation and propagation of fatigue cracks, and most probable circumstances of crack initiation. As the result of this study, it is suggested that newly installed drum journal be thoroughly inspected at the next periodic maintenance intervals for evidence of cracking, the microstructure examination and hardness measurements to prevent steam drum from the failure accident.

  • PDF

Drag Reduction in Turbulent Channel flow with Periodically Arrayed Heating and Cooling Strips (난류 채널 내 냉·열판 부착에 의한 마찰저항 감소)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.608-618
    • /
    • 2005
  • A new technique giving significant drag reduction in turbulent shear flows has been proposed by using the buoyancy effect to generate periodic spanwise motion. Such spanwise motion can be obtained by arranging heating and cooling strips periodically aligned in the spanwise direction of a vertical channel, where the streamwise mean flow is perpendicular to the gravity vector The strip size has been changed in order to obtain the optimum size corresponding to the maximum drag reduction. The bulk Reynolds number, $ Re_{m} = U_{m} \delta / \nu \$ is fixed at 2270 while Grashof numbers is changed between $10^{6}$ to $10^{7}$. As Grashof number increases, considerable drag reduction can be obtained, At the highest Grashof number, an optimum strip size of about 250 wail units gives drag reduction of about 35$\%$. The greater the Grashof number, the smaller the strip size attains the maximum drag reduction.

Synthesis and Analysis of Ge2Sb2Te5 Nanowire Phase Change Memory Devices

  • Lee, Jun-Yeong;Kim, Jeong-Hyeon;Jeon, Deok-Jin;Han, Jae-Hyeon;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.222.2-222.2
    • /
    • 2015
  • A $Ge_2Sb_2Te_5$ nanowire (GST NW) phase change memory device is investigated with Joule heating electrodes. GST is the most promising phase change materials, thus has been studied for decades but atomic structure transition in the phase-change area of single crystalline phase-change material has not been clearly investigated. We fabricated a phase change memory (PCM) device consisting of GST NWs connected with WN electrodes. The GST NW has switching performance with the reset/set resistance ratio above $10^3$. We directly observed the changes in atomic structure between the ordered hexagonal close packed (HCP) structure and disordered amorphous phase of a reset-stop GST NW with cross-sectional STEM analysis. Amorphous areas are detected at the center of NW and side areas adjacent to heating electrodes. Direct imaging of phase change area verified the atomic structure transition from the migration and disordering of Ge and Sb atoms. Even with the repeated phase transitions, periodic arrangement of Te atoms is not significantly changed, thus acting as a template for recrystallization. This result provides a novel understanding on the phase-change mechanism in single crystalline phase-change materials.

  • PDF