• Title/Summary/Keyword: Periodic B.C

Search Result 91, Processing Time 0.028 seconds

NUMERICAL TECHNIQUES FOR HOVERING ROTOR PERFORMANCE ANALYSIS (호버링 로터 성능해석을 위한 수치기법 연구)

  • Kim, C.W.;Park, Y.M.;Jang, B.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.151-154
    • /
    • 2006
  • In the present paper, hovering performance analyses of proprotor and helicopter rotor blades were performed by using FLUENT software. As a proprotor, TRAM(Tilt Rotor Aeroacoustic Model) was selected and performance analysis was carried out with mesh adaptation for more elaborate solution. As a helicopter rotor blades, two bladed Caradonna and Tung's rotor and four-bladed BO-105 helicopter rotor blades were selected. In case of Caradonna and Tung's rotor, vortex trajectory was compared with experimental data to inspect the vortex convection capability of the present flow solver. For the final case, performance of BO-105 helicopter rotor blades was investigated and compared with experimental data. After performance analyses of proprotor and helicopter rotors, it was shown that the present solver showed reasonable vortex strength, wake geometry and thurst coefficient distributions. But power coefficient was somewhat overestimated about $10%{\sim}15%$ regard less of mesh adaptation.

  • PDF

ON THE RATIONAL RECURSIVE SEQUENCE $x_{n+1}=\frac{{\alpha}x_n+{\beta}x_{n-1}+{\gamma}x_{n-2}+{\delta}x_{n-3}}{Ax_n+Bx_{n-1}+Cx_{n-2}+Dx_{n-3}}$

  • Zayed E.M.E.;El-Moneam M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.247-262
    • /
    • 2006
  • The main objective of this paper is to study the boundedness character, the periodic character and the global stability of the positive solutions of the following difference equation $x_{n+1}=\frac{{\alpha}x_n+{\beta}x_{n-1}+{\gamma}x_{n-2}+{\delta}x_{n-3}}{Ax_n+Bx_{n-1}+Cx_{n-2}+Dx{n-3}}$, n=0, 1, 1, ... where the coefficients A, B, C, D, ${\alpha},\;{\beta},\;{\gamma},\;{\delta}$ and the initial conditions x-3, x-2, x-1, x0 are arbitrary positive real numbers.

BEHAVIOR OF POSITIVE SOLUTIONS OF A DIFFERENCE EQUATION

  • TOLLU, D.T.;YAZLIK, Y.;TASKARA, N.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.217-230
    • /
    • 2017
  • In this paper we deal with the difference equation $$y_{n+1}=\frac{ay_{n-1}}{by_ny_{n-1}+cy_{n-1}y_{n-2}+d}$$, $$n{\in}\mathbb{N}_0$$, where the coefficients a, b, c, d are positive real numbers and the initial conditions $y_{-2}$, $y_{-1}$, $y_0$ are nonnegative real numbers. Here, we investigate global asymptotic stability, periodicity, boundedness and oscillation of positive solutions of the above equation.

System Identification of Flexible beam Using Eigensystem Realization Algorithm (Eigensystem Realization Algorithm을 이용한 유연한 빔의 운동방정식 규명)

  • Lee, In-Sung;Lee, Jae-Won;Lee, Soo-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.566-572
    • /
    • 2000
  • The System identification is the process of developing or improving a mathematical model of a physical system using experimental data of the input, output and noise relationship. The field of system identification has been an important discipline within the automatic control area. The reason is the requirement that mathematical models having a specified accuracy must be used to apply modem control methods. In this paper, it is confirmed that we can obtain transfer function of flexible beam that is expressed in the forms of identified state-space system matrix A, B, C, D and identified observer gain G using Eigensystem Realization Algorithm including singular value decomposition. And these matrices can be applied to the automatic control. In addition to, it is also confirmed that transfer function can express a system using identified observer gain G, in spite of a noisy data or a periodic disturbance.

  • PDF

DIFFUSIVE AND STOCHASTIC ANALYSIS OF LOKTA-VOLTERRA MODEL WITH BIFURCATION

  • C.V. PAVAN KUMAR;G. RANJITH KUMAR;KALYAN DAS;K. SHIVA REDDY;MD. HAIDER ALI BISWAS
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.11-31
    • /
    • 2023
  • The paper presents a critical analysis of selected topics related to the modeling of interacting species in which prey has nonlinear reproduction, which is in competition with predator. The mathematical model's stochastic stability is investigated. The method of designing appropriate Lyapunov functions is used to identify permanence conditions among the parameters of the model and conditions for the structure to no longer be extinct. The system's two-dimensional diffusive stability is regarded and studied. The system experiences the process of saddle-node bifurcation by varying the death rate of predator parameter. Further effects of parameters that undergo inherent oscillations are numerically investigated, revealing that as the intensity of predation parameter b is increased, the device encounters non-periodic and damped oscillations.

Radial and azimuthal oscillations of 24 Halo Coronal Mass Ejections using multi spacecraft

  • Lee, Harim;Moon, Yong-Jae;Nakariakov, V.M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.62.2-62.2
    • /
    • 2017
  • We have made an investigation on the radial and azimuthal wave modes of full halo coronal mass ejections (HCMEs). For this, we consider 24 HCMEs which are simultaneously observed by SOHO and STEREO A & B from August 2010 to August 2012 when they were roughly in quadrature. Using the SOHO/LASCO C3 and STEREO COR2 A & B running difference images, we estimate the instantaneous apparent speeds of the HCMEs at 24 different position angles. Major results from this study are as follows. First, there are quasi-periodic variations of the instantaneous radial velocity with the periods ranging from 24 to 48 mins. Second, the amplitudes of instant speed variations are about a third of the projected speeds. Third, the amplitudes are found to have a weak anti-correlation with period. Our preliminary identification from SOHO observations shows that there are several distinct radial and azimuthal wave modes: m=0 (radial) for five events, m=1 for eleven events, m=2 for three events, and unclear for the other events. In addition, we are making a statistical investigation on the oscillation of 733 CMEs to understand their physical origins.

  • PDF

Detailed Heat Transfer Characteristics on Rotating Turbine Blade (회전하는 터빈 블레이드에서의 열전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1074-1083
    • /
    • 2006
  • In the present study, the effect of blade rotation on blade heat transfer is investigated by comparing with the heat transfer results for the stationary blade. The experiments are conducted in a low speed annular cascade with a single stage turbine and the turbine stage is composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has a flat tip and the mean tip clearance is 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. For the experiments, the inlet Reynolds number is $Re_c=1.5{\times}10^5$, which results in the blade rotation speed of 255.8 rpm. Blade rotation induces a relative motion between the blade and the shroud as well as a periodic variation of incoming flow. Therefore, different heat/mass transfer patterns are observed on the rotating blade, especially near the tip and on the tip. The relative motion reduces the tip leakage flow through the tip gap, which results in the reduction of the tip heat transfer. However, the effect of the tip leakage flow on the blade surface is increased because the tip leakage vortex is formed closer to the surface than the stationary case. The overall heat/mass transfer on the shroud is not affected much by the blade rotation.

Toxin Genes and Antibiotic Resistance of Food Poisoning Bacteria Isolated from Food Service Equipment in Childcare Centers (어린이집 급식설비에서 분리된 식중독 미생물의 독소 유전자 및 항생제 내성)

  • Eun-yeong Kim;Chae-Young Kim;Ji-Yu Im;Jung-Beom Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.266-272
    • /
    • 2024
  • This study assessed the contamination level of food poisoning bacteria on handles of food service equipment in childcare centers to prevent food poisoning and analyzed toxin genes and antibiotic resistance of isolated strains. The isolates used in this study were collected from 101 childcare centers in Jeollanam-do. Four strains of Bacillus cereus and two strains of Staphylococcus aureus were isolated on the handles of food service equipment (refrigerators and freezers). The toxin genes of B. cereus were detected as nheA, nheB, nheC, entFM, and cytK. No toxin genes of S. aureus were detected. B. cereus showed resistance to β-lactam antibiotics, such as ampicillin and cefepime. S. aureus also showed resistance to antibiotics such as ampicillin and cefepime. Therefore, microbial safety and hygiene management, such as periodic sterilization of handles, should be strengthened to prevent food poisoning caused by cross-contamination of food service equipment handles in childcare centers.

Computer Simulation of an Absorption Heat Pump for Recovering Low Grade Waste Heat (저온 폐열 회수를 위한 제1종 흡수식 열펌프의 컴퓨터 시뮬레이션)

  • Karng, S.W.;Kang, B.H.;Jeong, S.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.187-197
    • /
    • 1996
  • A computer program for thermal design analysis has been developed to predict the operating characteristics and performance of an absorption heat pump to recover $30{\sim}40^{\circ}C$ of waste hot water. The effects of heat transfer area of the system components, temperature and mass flow rate of heat transfer medium, and solution circulation rate on the system performance are investigated in detail. The results obtained indicate that the COP is increased with a decrease in the temperature of driving steam and with an increase in the temperature of waste hot water while the COP is little affected by the variation of a hot water temperature. It is also found that the heating output is increased with an increase in the temperature of waste hot water and driving steam as well as with a decrease in the temperature of hot water. The simulation results are also compared with the experimental results for a periodic operation of the system and obtained a satisfactory agreement.

  • PDF

Shape Oscillation and Detachment of Droplet on Vibrating Flat Surface (진동하는 평판 위의 액적의 형상 진동 및 제거 조건에 대한 연구)

  • Shin, Young-Sub;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.337-346
    • /
    • 2014
  • This study aimed to understand the mode characteristics of a droplet subject to periodic forced vibration and the detachment of a droplet placed on a plate surface. An surface was coated with Teflon to clearly observe the behavior of a droplet. The contact angle between the droplet and surface and the hysteresis were found to be approximately $115^{\circ}C$ and within $25^{\circ}C$, respectively. The coating process was performed in a clean room that had an environment with a low level of contaminants and impurities such as air dust, detergents, and particles. To predict the resonance frequency of a droplet, theoretical and experimental approaches were applied. Two high-speed cameras were configured to acquire side and top views and thus capture different characteristics of a droplet: the mode shape, the detachment, the separated secondary droplet, and the waggling motion. A comparison of the theoretical and experimental results shows no more than 18 discrepancies when predicting the resonance frequency. These differences seem to be caused by contact line friction, nonlinear wall adhesion, and the uncertainty of the experiment. For lower energy inputs, the contact line of the droplet was pinned and the oscillation pattern was axisymmetric. However, the contact line of the droplet was de-pinned as the oscillation became more vigorous with increased energy input. The size of each lobe at the resonance frequency is somewhat larger than that at the neighboring frequency. A droplet in mode 2, one of the primary mode frequencies, exhibits vertical periodic movement as well as detachment and secondary ejection from the main droplet.