• Title/Summary/Keyword: Periodic Acoustic Source

Search Result 15, Processing Time 0.024 seconds

Acoustic Scattering from Circular Cylinder by Periodic Sources (주기적인 음원에 의한 원형 실린더의 음향 산란)

  • Lee, Duck-Joo;Kim, Yong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.41-47
    • /
    • 2007
  • Scattering fields of two dimensional acoustic waves by a circular cylinder are investigated. The present numerical approach for the acoustic scattering problem has difficulties of numerical robustness, long-time stability and suitability of far-field boundary treatments. The time-dependent periodic acoustic source is used to analyze Interference patterns between incident waves and waves reflected by the cylinder. Characteristic boundary algorithms coupled with 4th order Modified-Flux-Approach ENO(essentially non-oscillatory) schemes are employed in generalized coordinates to examine the effect of the wane frequency on the interference patterns. Non-reflecting boundary conditions, which is crustal for accurate computations of aeroacoustic problems, are used not to contaminate scattering fields by reflected waves at the outer boundary. Computed scattering fields show the circumferential acoustic modes generated by interacting between acoustic sources and scattered waves. At a lower frequency, the wave passes almost straight through the cylinder without Interacting with circular cylinder. Simulation results are presented and compared with the analytic solution. Computed RMS-pressure distribution on the cylinder wall is good agreement with exact solution.

Synchronous Periodic Frequency Modulation Based on Interleaving Technique to Reduce PWM Vibration Noise

  • Zhang, Wentao;Xu, Yongxiang;Ren, Jingwei;Su, Jianyong;Zou, Jibin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1515-1526
    • /
    • 2019
  • Ear-piercing high-frequency noise from electromagnetic vibrations in motors has become unacceptable in sensitive environments, due to the application of pulse width modulation (PWM) and in consideration of switching losses. This paper proposed a synchronous periodic frequency modulation (SPFM) method based on the interleaving technique for paralleled three-phase voltage source inverters (VSIs) to eliminate PWM vibration noise. The proposed SPFM technique is able to effectively remove unpleasant high-frequency vibration noise as well as acoustic noise more effectively than the conventional periodic carrier frequency modulation (PCFM) and interleaving technique. It completely eliminates the vibration noise near odd-order carrier frequencies and reduces the PWM vibration noise near even-order carrier frequencies depending on the switching frequency variation range. Furthermore, the SPFM method is simple to implement and does not employ additional circuits in the drive system. Finally, the effectiveness of the proposed method has been confirmed by detailed experimental results.

A Study on Noise Identification of Compressor Based on Two Dimensional Complex Sound Intensity (Two Dimensional Complex Sound Intensity를 이용한 압축기 소음원 규명에 관한 연구)

  • 안병하;김영수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.83-92
    • /
    • 2000
  • Sound intensity method is well known as a visualization technique of sound field or sound propagation in noise control. Sound intensity or energy flux is a vector quantity which describes the amount and the direction of net flow of acoustic energy at a given position. Especially two dimensional sound intensity method is very useful in evaluating periodic characteristics and acoustic propagation mode of noise source. In this paper, we have studied the noise source Identification, acoustic sound field analysis, and characteristics of noise source of rotary compressor and scroll compressor for air conditioner using complex sound intensity method. Also we proposed a now method of time domain analysis which is used in evaluating of position of noise source in rotary and scroll compressor in this paper This paper presents the advantage, simplicity and economical efficiency of this method by analysing the characteristics of noise source with two dimensional complex sound intensity simultaneously.

  • PDF

Fault localization method of a train in cruise (주행 중 철도 차량의 결함 위치 추정 방법)

  • Jeon, Jong-Hoon;Kim, Yang-Hann
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.903-912
    • /
    • 2007
  • Faults of rotating parts of a train normally generate unexpected frequency band or impulsive sound[1] which has a period when it moves with a constant speed. The former can be detected by the moving frame acoustic holography method, which visualizes sound field that is generated by a moving and emitting pure tone or band limited noise source. We have attempted to apply the method to the latter case: the periodic impulsive sound which generate different signal compared with what can be measured by the band limited noise. The signal to noise ratio which determines the success of early fault detection must also be studied with the impulsive and moving signal. This research shows how the problems related with these issues can be resolved. The main idea is that periodic impulsive signal can be expressed by infinite set of discrete pure tones. This enables us to obtain lots of holograms that visualize periodic impulsive sound field including noise by using the moving frame acoustic holography method. Therefore holograms can be averaged to improve the signal to noise ratio until having reliable information that exhibits where the impulsive sources are. Theory and experiment by using the miniature vehicle are described [Work supported by BK21 & KRRI].

  • PDF

Effects of macroporosity and double porosity on noise control of acoustic cavity

  • Sujatha, C.;Kore, Shantanu S.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.351-366
    • /
    • 2016
  • Macroperforations improve the sound absorption performance of porous materials in acoustic cavities and in waveguides. In an acoustic cavity, enhanced noise reduction is achieved using porous materials having macroperforations. Double porosity materials are obtained by filling these macroperforations with different poroelastic materials having distinct physical properties. The locations of macroperforations in porous layers can be chosen based on cavity mode shapes. In this paper, the effect of variation of macroporosity and double porosity in porous materials on noise reduction in an acoustic cavity is presented. This analysis is done keeping each perforation size constant. Macroporosity of a porous material is the fraction of area covered by macro holes over the entire porous layer. The number of macroperforations decides macroporosity value. The system under investigation is an acoustic cavity having a layer of poroelastic material rigidly attached on one side and excited by an internal point source. The overall sound pressure level (SPL) inside the cavity coupled with porous layer is calculated using mixed displacement-pressure finite element formulation based on Biot-Allard theory. A 32 node, cubic polynomial brick element is used for discretization of both the cavity and the porous layer. The overall SPL in the cavity lined with porous layer is calculated for various macroporosities ranging from 0.05 to 0.4. The results show that variation in macroporosity of the porous layer affects the overall SPL inside the cavity. This variation in macroporosity is based on the cavity mode shapes. The optimum range of macroporosities in poroelastic layer is determined from this analysis. Next, SPL is calculated considering periodic and nodal line based optimum macroporosity. The corresponding results show that locations of macroperforations based on mode shapes of the acoustic cavity yield better noise reduction compared to those based on nodal lines or periodic macroperforations in poroelastic material layer. Finally, the effectiveness of double porosity materials in terms of overall sound pressure level, compared to equivolume double layer poroelastic materials is investigated; for this the double porosity material is obtained by filling the macroperforations based on mode shapes of the acoustic cavity.

A Study on Performance Improvement of Active Noise Control Using Synchronous Sampling Method (동기화한 이산화법을 이용한 능동소음제어의 성능향상에 관한 연구)

  • Kim, Heung-Seob;Oh, Jae-Eung;Shin, Joon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2523-2532
    • /
    • 1994
  • In this paper, active noise control is performed in a duct system using the periodic pulse train which corresponds to the periodic component of noise source as a reference signal. Control algorithm applied in this study is possible to eliminate the acoustic feedback which occurs in the conventional filtered-x and filtered-u LMS algorithm by using electrical reference signal and has the fast adaptation speed with low filter orders by using synchronous sampling method is discussed via computer simulations and experiments of case studies such as frequency modulation, amplitude modulation and frequency differency between source signal and reference signal.

An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan (진공청소기 원심홴의 유동과 소음원 해석)

  • 전완호;유기완;이덕주;이승갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF

On the in-duct acoustical source characteristics of a simplified time-varying fluid machine (시변하는 간단한 유체기계의 덕트 내 음원 특성에 대한 해석적 연구)

  • 이정권;장승호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.517-521
    • /
    • 2001
  • Measurement techniques for the in-duct source characteristics of fluid machines can be classified into direct method and load method, according to whether the technique employs an external acoustic source or not. It has been known that the two methods yield different results and the load method used to come up with a negative source resistance, in spite of the fact that a very accurate prediction of radiated noise can be obtained by using any result. This paper is focused to the effect of time-varying nature of fluid machines on the output result. For this purpose, a simplified fluid machine consisting of a reservoir, a valve and a pipe is considered as representing a typical linear, periodic, time-varying system and the measurement techniques are simulated by utilizing the Hill equation and its steady-state forced response. In the load method, the source impedance turns out being dependent on the valve impedance at the calculation frequency and the valve and load impedances at other frequencies as well.

  • PDF

The Study of the Multi-Channel Active Noise Reduction of the Vehicle Cabin I : Computer Simulation (자동차 실내 소음저감을 위한 다채널 능동 소음제어에 관한 연구I : 컴퓨터 시뮬레이션)

  • Lee, T. Y.;Shin, J.;Kim, H. S.;Oh, J. E.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.95-106
    • /
    • 1992
  • Active control of acoustic noise is an application area of adaptive digital signal processing with increasingly interest along the last year. This work studies the implementation of the multichannel LMS filter and the application of this algorithm for the reduction of the noise inside a vechicle cabin using a number of 'secondary sources' drived by adaptive filtering of a reference noise source. Firstly, we propose the use of an adaptive method for the time-varient optimal convergence factor. Secondly, we propose the use of adaptive delayed inverse model to estimate the elastic-acoustic transfer function presented in vechicle cabin. The original, primary source is often periodic, with a known fundamental frequency. A suitably filtered reference signal can thus be used to drive the secondary sources. An algorithm is presented for adapting the coefficients of an FIR filter feeding such a secondary source in such a way as to minimize the output of a suitably placed microphone. In this algorithm, the coefficients of adaptive filter driving an array of secondary sources can be adapted to minimize the sum of the squares of the outputs of a number of error microphones. The multichannel LMS algorithm displays that such an algorithm is considered suitable to used for the global suppression of noise in vehicle cabin.

  • PDF

A Review of the Possible Causes of Negative Source Impedance in Fluid Machines (유체기계에 있어서 부의 음원 임피던스의 원인에 관한 고찰)

  • ;Keith S. Peat
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.76-82
    • /
    • 2001
  • Most fluid machines can be considered as periodic noise sources when operated under constant conditions, which allows for a frequency domain representation of the source and the associated acoustic field In the duct. In such a representation, the source is characterized by frequency-dependent values of both strength and impedance. Although knowledge of these values can be gained by either experimentation or by modeling, one-port acoustic characteristics of an in-duct source with high flow velocity, high temperature, and high sound level can be measured only by the multiload method using an overdetermined set of open pipes with different lengths as applied loads. However, the problem is that negative source resistances have been often measured. This paper reviews the possible causes of the problem, with reference to experimental and theoretical results, in an attempt to clarify the issue. A new interpretation is given for the violation of basic assumptions and the defect in the algorithm of multiload method. The major cause and mechanism of the problem is due to the violation of time invariance assumption of the source and the load impedance can seriously affect the final measured result of source impedance.

  • PDF